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Abstract. We show how to consider similarity between 
features for calculation of similarity of objects in the Vec­
tor Space Model (VSM) for machine learning algorithms 
and other classes of methods that involve similarity be­
tween objects. Unlike LSA, we assume that similarity 
between features is known (say, from a synonym dictio­
nary) and does not need to be learned from the data. 
We call the proposed similarity measure soft similarity. 
Similarity between features is common, for example, in 
natural language processing: words, n-grams, or syn­
tactic n-grams can be somewhat different (which makes 
them different features) but still have much in common: 
for example, words “play” and “game” are different but 
related. When there is no similarity between features 
then our soft similarity measure is equal to the standard 
similarity. For this, we generalize the well-known cosine 
similarity measure in VSM by introducing what we call 
“soft cosine measure”. We propose various formulas 
for exact or approximate calculation of the soft cosine 
measure. For example, in one of them we consider 
for VSM a new feature space consisting of pairs of 
the original features weighted by their similarity. Again, 
for features that bear no similarity to each other, our 
formulas reduce to the standard cosine measure. Our 
experiments show that our soft cosine measure provides 
better performance in our case study: entrance exams 
question answering task at CLEF. In these experiments, 
we use syntactic n-grams as features and Levenshtein 
distance as the similarity between n-grams, measured 
either in characters or in elements of n-grams.

Keywords. Soft similarity, soft cosine measure, vector 
space model, similarity between features, Levenshtein 
distance, n-grams, syntactic n-grams.

1 Introduction

Computation of similarity of specific objects is a basic 
task of many methods applied in various problems in 
natural language processing and many other fields. In 
natural language processing, text similarity plays crucial 
role in many tasks from plagiarism detection [18] and 
question answering [3] to sentiment analysis [14-16].

The most common manner to represent objects is 
the Vector Space Model (VSM) [17]. In this model, the 
objects are represented as vectors of values of features. 
The features characterize each object and have numeric 
values. If by their nature the features have symbolic 
values, then they are mapped to numeric values in some 
manner. Each feature corresponds to a dimension in 
the VSM. Construction of VSM is in a way subjective, 
because we decide which features should be used and 
what scales their values should have. Nevertheless, 
once constructed, the calculation of similarity of the vec­
tors is exact and automatic. VSM allows comparison of 
any types of objects represented as values of features. 
VSM is especially actively used for representing objects 
in machine learning methods.

In the field of natural language processing, the objects 
usually are various types of texts. The most widely 
used features are words and n-grams. In particular, re­
cently we have proposed a concept of syntactic n-grams, 
i.e., n-grams constructed by following paths in syntactic 
trees [19,21]. These n-grams allow taking into account 
syntactic information for VSM representation (and, thus, 
for use with machine learning algorithms as well). There 
are various types of n-grams and syntactic n-grams ac­
cording to types of elements they are built of: lexical units 
(words, stems, lemmas), POS tags, SR tags (names of 
syntactic relations), characters, etc. Depending on the
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task, there are also mixed syntactic n-grams that are 
combinations of various types of elements, for example, 
ones that include names of syntactic relations [20]. The 
values of the features are usually some variants of the 
well-known tf-idf measure.

In Vector Space Model, traditional cosine mea­
sure [17] is commonly used to determine the similarity 
between two objects represented as vectors. The co­
sine is calculated as normalized dot-product of the two 
vectors. The normalization is usually Euclidean, i.e., the 
value is normalized to vectors of unit Euclidean length. 
For positive values, the cosine is in the range from 0 to 1. 
Given two vectors a and b, the cosine similarity measure 
between them is calculated as follows: the dot product is 
calculated as

■ b =  ^ 2  at bi (1)

the norm is defined as

||x|| =  y fx ~ x , (2)

and then the cosine similarity measure is defined as

a b
cosine(a, b)

||a|| x

which given (1) and (2) becomes

cosine (a, b) = 1 ai bi

EN=1 a h / E  N=1 b

(3)

(4)

Applied to a pair of N-dimensional vectors, this for­
mula has both time and memory complexity O (N ).

In a similar way, the same VSM is used by machine 
learning algorithms. They are applied, for example, 
for grouping, separation, or classification of objects by 
learning weights of features or by choosing most signifi­
cant features.

Traditional cosine measure and traditional similarity 
measures consider VSM features as independent or in 
some sense completely different; mathematically speak­
ing, the formula (1) considers the vectors in the VSM as 
expressed in an orthonormal basis. In some applications 
this is a reasonable approximation, but far too often it is 
not so.

For example, in the field of natural language pro­
cessing the similarity between features is quite intuitive. 
Indeed, words or n-grams can be quite similar, though 
different enough to be considered as different features. 
For example, words “play” and “game” are of course 
different words and thus should be mapped to different 
dimensions in SVM; yet it is obvious that they are related

semantically. This also can be interpreted in information- 
theoretic way (when one speaks of playing, speaking 
of a game is less surprising) or in probabilistic way 
(conditional probability of the word “game” increases in 
the context of “play”). That is, these dimensions are not 
independent. Similarity between words is very important 
in many applications of natural language processing and 
information retrieval.

In this paper, we propose considering such similarity 
of features in VSM, which allows generalization of the 
concepts of cosine measure and similarity. We describe 
our experiments that show that the measure that takes 
into account similarity between features yields better 
results for a question answering task we worked with.

Some methods, such as LSA, can learn the similarity 
between features from the data. In contrast, we assume 
that similarity between features is known— say, from a 
synonym dictionary— and does not need to be learned 
from the data. Thus our method can be used even when 
there is no sufficient data to learn the similarity between 
features from statistics.

The rest of this paper is organized as follows. Sec­
tion 2 introduces the soft cosine measure and the idea 
of the soft similarity. Section 3 describes the question 
answering task for entrance exams at CLEF and the 
method that we applied in it. Section 4 presents appli­
cation of the soft cosine similarity (the experiments) and 
discussion of the results. Section 5 concludes the paper.

2 Soft Similarity and Soft Cosine 
Measure

Consider an example of using words as features in 
a Vector Space Model. Suppose that we have two 
texts: (1) play, game, (2) player, gamer. It defines 
a 4-dimensional VSM with the following features: play 
player, game, gamer. We have two vectors a and b: 
a =  [1,0 ,1 ,0 ] and b =  [0 , 1, 0, 1]. The traditional cosine 
similarity of these two vectors is 0. But if we take into 
consideration the similarity of words, it turned out that 
these vectors are quite similar. There is special proce­
dure called ‘stemming’ in natural language processing 
aimed to take into account this kind of similarity between 
words, but it is a specific ad hoc procedure. A more 
general question is: how can we take into account the 
similarity between features in Vector Space Model? The 
traditional similarity does not consider this question, i.e., 
all features are considered different.

The cosine measure is widely applied and usually is 
taken for granted. We found two papers that suggest 
its modification. In [7] the authors claim that the cosine

a
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similarity is overly biased by features with higher values 
and does not care much about how many features two 
vectors share, i.e., how many values are zeroes. They 
propose a modification of the cosine measure called the 
distance weighted cosine measure (dw-cosine). The 
dw-cosine is calculated by averaging the cosine similarity 
with the Hamming distance. The Hamming distance 
counts how many features two vectors do not share. In 
this way, they try to decrease the similarity value of the 
two vectors that share less features or have high values. 
It is an attempt “to tune” the traditional cosine measure.

The other paper, Mikawa et al. [8], proposes “ex­
tended cosine measure”, which is in a some way similar 
to our proposal: they consider Mahalanobis distance 
for similarity of features. They do not generalize the 
concept of similarity, they just modify the cosine for this 
specific measure. Also, it is not obvious how to measure 
Mahalanobis distance in many situations (we propose to 
use much more clear Levenshtein distance, see below).

Our idea is more general: we propose to modify the 
manner of calculation of similarity in Vector Space Model 
taking into account similarity of features. If we apply 
this idea to the cosine measure, then the “soft cosine 
measure” is introduced, as opposed to traditional “hard 
cosine”, which ignores similarity of features. Note that 
when we consider similarity of each pair of features, it 
is equivalent to introducing new features in the VSM. 
Essentially, we have a matrix of similarity between pairs 
of features and all these features represent new dimen­
sions in the VSM.

Note that if the same idea is applied to similarity 
while using machine learning algorithms in Vector Space 
Model, then the similarity is transformed into “soft sim­
ilarity”. Again, new dimensions (features) are added 
to the VSM. The values of the new features can be ob­
tained, say, by taking the mean value of the two features 
of the same vector multiplied by the similarity of these 
two features. It is the most obvious suggestion, other 
possibilities can be explored.

The idea to take into account the similarity of features 
was also proposed in [4, 5], but it was applied to the 
concept of cardinality. The authors introduced the “soft 
cardinality”, i.e., the cardinality that can obtain different 
values depending on similarity of features. In their case, 
this idea does not have the clear manner of calculation of 
the new cardinality and does not generalize any impor­
tant concept. We use the term “soft” following their idea 
of soft cardinality.

The next question is how to measure similarity be­
tween features. In general, the measuring of similarity 
depends on the nature of the features. In our case, 
we compare features using the Levenshtein distance [6],

taking advantage of the fact that they are usually strings 
in case of natural language processing.

Recall that the Levenshtein distance is the number 
of operations (insertions, deletions, rearrangements) 
needed to convert a string into another sting. In our 
case, the Levenshtein distance is a good measure for 
string comparison, but other measures can be exploited 
as well. So, if our objects are texts then the traditional 
features are words, n-grams or syntactic n-grams and 
their corresponding values are based on the tf-idf mea­
sure. In case of the Levenshtein distance if we use 
n-grams or syntactic n-grams then there are two possi­
bilities for string comparison: directly compare character 
transformations or consider each element of n-grams as 
a unit for comparison. We explored both possibilities in 
the experiments. In case of words as features, only first 
possibility is applicable. In case of word, say, WordNet 
similarity functions can be used.

In what follows we will present several formulas that 
take into account similarity between features. We will 
show that the soft cosine measure performs better than 
the conventional cosine (4) in most cases for a version of 
question answering task— a classical natural language 
processing problem. Namely, both our exact and simpli­
fied expressions for soft cosine measure obtained better 
experimental results as compared to the standard cosine 
measure in the majority of cases.

2.1 Feature Similarity as a Non-orthogonality 
of the VSM Basis

We assume that we deal with objects, say, documents, 
that are modeled in a VSM as vectors whose coordinates 
correspond to features, say, words. For example, in the 
bag-of-words model, documents

a : a player will play a game they like to play 

b : they play the game they like

are represented by vectors

a =  (2 ,1 ,1 ,2 ,1 ,1 ,1 ,1 ,0 ), (5)

b =  (0, 0, 0, 1, 1, 2, 1, 0 , 1), (6)

where the coordinates correspond to the frequencies of 
the words a, player, will, play game, they, like, to, the 
in each document; e.g., a and play appear in the first 
document twice. Now we can measure the similarity 
between these texts as cosine(a, b).
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However, the basis vectors of this representation, i.e.,

e1 =  (1, 0, 0 , . . .  , 0) 

e2 =  (0, 1, 0 , . . .  , 0)

e =  (0, 0, 0 , . . .  , 1)

are also objects (one-word documents, i.e., words) in this 
vector space. Saying that they are orthogonal,

cosine(e , ej ) =  0 , (7)

is equivalent to saying that they are independent, or that 
there is no similarity whatsoever between them.

However, as we have discussed, in fact almost al­
ways there is some similarity, which can be identified 
independently from the VSM—e.g., using a dictionary of 
synonyms for words. In our example, game is obviously 
related to play.

In this paper we make a natural assumption that this 
similarity can be modeled as cosine between these ob­
jects:

cosine(e , ej ) =  si j  =  s im (f i,  f j (8)

where f i  and f j  are the features corresponding to these 
basis vectors, and sim(^) is a similarity measure, such as 
synonymy. There exist numerous ways of quantitatively 
measuring similarity (or relatedness) between words. 
For example, the well-known W o rd N e t::S im ila r ity  pro­
vides eight different ways of calculating word related­
ness.

Thus, we consider the basis in which we initially ob­
tained the vectors, such as (5) in the above example, to 
be non-orthogonal.

Still our goal is to be able to calculate the cosine
cosine(a, b) between vectors initially given in such a
basis:

a =  ai ei , (9)

b =  Y l  ,=1 biei . (10)

Since dot product is bilinear, we have:

a • b =  (EL ai e0 • (EL bi e0 (11)

(12)

(13)

i =1
,N

=  E  E i ,j = 1 ai bj (ei • ej ) 

=  E E i ,j = 1 Sij a ib j,

where s ij are given by (8). We obtain instead of the 
classical (4) our main formula:

so ftjcos ine1 (a, b) E  E i . j  si j ai bj

E E ” , E  E i , j  si j  bi bj
(14)

where s ij =  s im (f i,  f j ).
Obviously, if there is no similarity between features 

(si i  =  1, si j  = 0  for i  =  j) ,  (14) is equivalent to the 
conventional formula (4).

This formula computes the cosine of a pair of vectors 
in time O (N 2).

2.2 Simplified Formula

While the formula (14) gives mathematically correct 
result, in practice existing software packages for ma­
chine learning and natural language processing, such as 
WEKA, might not be designed to handle comparisons of 
the data vectors via a matrix (s i j). Instead, they apply a 
built-in expression (4) with dot-product (1).

Our goal now will be to transform the data vectors in 
such a way that the cosine measure (14) be calculated 
via the conventional expression of the form (4). One way 
of achieving it is to map our data vectors a, b to a space 
with orthonormal basis.

Our first attempt is to use a space of dimension N 2. 
We will map the data vectors a =  (a i), b =  (bi) to 
a new N 2-dimensional vectors ( a j ), ( b j ) by averaging 
different coordinates:

ai +  aj 
2 bi

bi +  bj 
2 (15)

where si s im (f i,  f j ) are given by (8). In these
new coordinates, we compare our data points using the 
classical expression (4), which in this case takes the form

so ftjcos ine2 (a, b) iNj =1 ai j  bi j

iNj =1 iN
b2 1 bi j

(16)

This formula has a simple interpretation: we consider 
each pair of features as a new feature with a “weight” or 
“importance” being the similarity of the two features, thus 
the normalizing coefficients in (15).

An advantage of the formula (16) over (14) is its 
simplicity and the fact that it can be used with exist­
ing machine-learning tools without change, by only re­
calculating the data vectors.

A disadvantage is the size of the obtained vectors: 
N 2 instead of N , which makes it suitable only for small

ai j i j i j

2
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feature sets. Time complexity of this formula is still
O (N 2).

Another disadvantage is that this simplified formula 
does not provide correct value for the cosine, as we 
will see in Section 2.4. However, our experiments show 
that this approximate value gives quite good results, 
comparable within the natural fluctuation of data to the 
correct formula (14). This suggests that the simplified 
formula (16) is worth trying in practice.

In particular, if there is no similarity between fea­
tures, (16) is equivalent to the conventional formula (4).

In our experiments reported below, we used this for­
mula as soft-Cosine2.

2.3 Dimensionality Reduction

In practice, VSM often has high dimensionality N ; for 
example, in natural language processing tasks hundreds 
of thousands of dimensions is common. In case of n- 
grams as features the dimensionality of the VSM can be 
especially high. In this case, forming N 2-dimensional 
vectors or operating with N  x N  matrices is impractical.

However, to use our formulas it is not necessary to 
operate with all N 2 elements of matrices or feed all N 2 
coordinates of vectors (15) into a machine learning soft­
ware package such as WEKA. Instead, it is enough to 
identify a small number of highly similar pairs of features, 
that is, only keep si j  greater than some threshold t ,
otherwise consider si 0.

If the similarity between features is given by some list, 
such as a dictionary of synonyms, then automatically 
only a small number of s ij =  0. For n-grams with 
the Levenshtein distance as a similarity measure (see 
Section 2.6), only a small number of n-grams will have 
any nonzero similarity.

With this, the matrix si j  can be easily stored and 
operated upon as a sparse matrix. What is more, in 
our simplified formula, only a small number of additional
dimensions is to be stored: those for th a t. >  t, i  =  j
(since sii =  1, at least N  dimensions are always stored).

While the simplified formula apparently implies a 
frightening N 2 dimensions of vectors, in practice one 
can choose to add very few data columns to the feature 
vectors, which makes this simple formula quite affordable 
in practice.

2.4 Corrected Formula, Dimensionality N 2

As we have mentioned, the expression (16) does not 
exactly compute cosine between two vectors. Indeed, 
substituting a i j , b j  in (16)

b =  E  E , -  , a ij b i (17)

with (15) and removing parentheses, we obtain (taking 
into account that the similarity values are symmetric,

b =  E E -  ai j  bi j  i, j
1 N

=  4 si j  (ai  +  a j  )(bi +  bj  )

=  1 ( E E "  ^

+  E E '
"*'N si j  +  sj i  r——aibr

2 ( E  E , -  , s i ja ib i+ E  E , -  , s ija ib j

k
2 ( E ( E  sik J aibi +  E E "  s ija ib j

1 ( e , ^  ^  i = j ^ ,

+  E E , -  si j  ai bj

si j  +  2_,k sik , i  — j  
s i j , i  =  j

Comparing this with (14), we see that the supposed 
value of the dot product is half the correct one, but this 
is not important because due to normalization in (3) it 
does not affect the cosine. What is important is that the 
coefficient at aibi has an extra summand equal to the 
sum of a row (or column) in the matrix ( s , ), thus the 
value of the expression is, generally speaking, incorrect.

This is simple to repair by changing the coefficients 
in (15): let it be now

ai +  aj 
2 bij = Ci, (18)

(2 is here to compensate for 2 in the derivation above, 
though it does not affect the cosine in any way). Compar­
ison of the last obtained equation (using in it c ij instead 
of s i,) with the correct formula (14) gives the equations

. _ i
ci i  ~r /  .<k=1 Cik — si i  =  -1

i  =  j ,
(19)

a

i j

a

a ib j.

a =i j i j

i j

i j  i j
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which gives

1- £fc=i sik ■ _  .
2 ’ * ^ j ,  (20)

Sij , * _  j .

Together with (18) and (16), this formula gives a data 
transformation almost as simple as our s o ft .cosine 2, but 
as correct as soft.cosine  1. It still has a disadvantage of 
dimensionality N 2 and time complexity O (N 2), and it is 
only applicable when all cu >  0 (improbable for large N ).

Obviously, in terms of precision and recall all ex­
perimental results for this formula are the same as for 
soft-cosine1.

2.5 Formula with Dimensionality N

It is possible, however, to construct a transformation of 
the basis of the vector space that gives the correct result 
with the same dimensionality N  of the vectors and with 
linear complexity O (N ) of computing the cosine of a pair 
of vectors.

Namely, we will transform the input data vectors to be 
expressed in an orthonormal basis. For this, we need 
to represent the basis vectors {ej } in some orthonormal 
basis of the same space. The matrix of the coordinates 
of these basis vectors ej  _  ( e j . . . ,  ejN ) in the orthonor­
mal basis is the transition matrix to re-calculate the input 
data points.

Denote this matrix E  _  (e j) and the matrix of simi­
larities S _  (s i j). Since we interpret the similarities as 
cosines between the basis vectors and given that they 
have unit length, we have a non-linear system of N 2 
equations on N 2 unknown values ej :

ei • ej  _  s i j , (21)

or

E E T _  S, (22)

where E T is the transpose of E. The algorithm that we 
describe below finds a solution of this system in the form 
of a triangular matrix E .

From the geometric point of view, we will implicitly 
construct an orthonormal basis and find the coordinates 
of our initial basis vectors ei in this new basis. If we know 
the coordinates of the basis vectors, we can easily find 
the coordinates of each data point in this new orthonor­
mal basis by multiplying the data vectors by the transition 
matrix ( e ij  ) .

We consider an orthonormal basis such that for each 
k, the first k vectors of this basis form an (orthonormal)

basis or the space generated by the first k original basis 
vectors ei .

Obviously, in such a basis matrix E  of coordinates of 
the vectors ei is a lower-triangular matrix:

e1 _  (e l, 0, 0, 0 , . . .  , 0 )
e2 _  (e1, e2, 0, 0 , . . . ,  0 )
e3 _  (e1, e|, ef, 0 , . . . ,  0 )
e4 _  (ef, e2, ef , e f , . . .  , 0  )

eN _(eN,eN,eN,eN,. .. ,eN).

Assume that we have found the coordinates of first 
k vectors ej . The next vector efc+1 forms the angles 
with the known cosines si j  _  s im (f i , f j ) with the first 
k vectors ej . Denote x i _  ek+1. All vectors ej  have unit 
length, thus cosine(ei , ej ) _  ei • ej . Since by construction 
all coordinates ej _  0 for i >  k, we have:

ej  • ek+1 _  ^  ej  x i _  si,k+1, j  _  1, . . .  , k. (23)• J i=  1

Recall that we consider the similarity values s ij to be the 
cosines between the basis vectors.

This is a square system of linear equations. It has a 
solution given that the coefficients are linearly indepen­
dent, which is by assumption because they are coordi­
nates of our basis vectors; we assume that the similarity 
measure obeys the triangle inequality: a thing cannot be 
too similar to two very different things at the same time.

This system can be solved, for example, by Gaussian 
elimination in time O (N 3).

Since the vector ek+1 has unit length, we have

£ k+1 x? _ 1 ,  (24)• ^ i=1

As soon as we found the first k of x i _  eik+1 from (23), 
we obtain

ek+1 _  Xk+1 _  j 1 -  E k=1 (ek+1) 2. (25)

Finally, all the coordinates ek+ 1 _  0 for i  >  k +  1. This
completely defines the coordinates of the vector ek+ 1.

The above expressions naturally give

e1 _  (1, 0 , . . . , 0) (26)

for k _  0. Starting from this value, in N  steps we can 
find the coordinates of all ei , that is, the transition matrix 
to transform our input data to an orthonormal basis, in 
which the cosine measure has the usual expression (4) 
built into existing machine-learning programs. The com­
plexity of the algorithm is O (N 4). However, the transition 
matrix does not depend on the data and thus can be
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Fig. 1. Behavior of the similarity functions based on Levenshtein distance: s im  as a function of d (m  =  9).

computed once for the given feature set and feature 
similarities. Then this matrix is used as a pre-processing 
step to re-calculate the input data vectors before using 
any machine-learning software package.

The dimensionality of the data vectors remains the 
same, N , and once the vectors have been transformed, 
cosine is computed in time O (N ), so that our soft cosine 
measure has no effect on the complexity of the algo­
rithms that use it.

We believe that this is the most promising way of cal­
culating the soft cosine measure (14) for large datasets 
of high dimensionality, though it is somewhat more com­
plicated in implementation.

2.6 Similarity between n-grams

We experimented with a natural language processing 
task using n-grams as features. Given that n-grams 
can share elements, it is important to take into account 
similarity between them.

As a measure of difference, or distance, between two 
n-grams f i ,  f j  we used their Levenshtein distance (edit

distance). We tried various ways to convert this distance 
into its inverse, similarity:

s im (f i,  f j ) =
1

1 +  d ,
(27)

s im (f i,  f j ) = 1 -  - ,m
(28)

s im (f i,  f j ) =
'Ji -  m  •

(29)

s im (f i,  f j ) = ( 1 -  ^  tm
(30)

where d =  Levenshtein_distance(fi , f j ) and m  is the 
maximum possible Levenshtein distance for two strings 
of the same length as the two given ones, which is the 
length of the longer of the two strings.

In our experiments, the expression (27) gave slightly 
better results, though the choice of the best expres­
sions still needs more research. Below we report the 
experimental results for similarity calculated using the 
expression (27).

A graphical representation of these expressions is 
given in Figure 1, which shows the similarity (Y axis) vs. 
the Levenshtein distance d (X axis). In the future we plan 
to try other expressions for calculation of similarity from 
distance.
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(a ) I'm going to share with you the story as to how I have become an HIV/AIDS campaigner
nsubj

Fig. 2. Dependency trees of the first three sentences of the text using word_POS combination for the nodes and 
dependency labels for the edges

3 Case Study: Entrance Exams 
Question Answering Task

3.1 Description of the Entrance Exams Task

In this section we describe the task, where we applied 
the proposed soft cosine measure. The only reasons 
why we chose this task are: (1) we applied in it the 
traditional cosine measure (so we can compare it), and 
(2) we participated in it in 2014, thus, we had all the data 
at hand. Our aim was to apply the soft cosine measure 
with various parameters and compare its performance 
with the traditional cosine measure.

The entrance exam task was first proposed in 2013 as 
a pilot task [12] in the Question Answering for Machine 
Reading Evaluation (QA4MRE) lab, which has been

offered at the CLEF conference1 since 2011 [10, 11]. 
The entrance exam task evaluates systems in the same 
situation, in which high school students are evaluated for 
entering a university. The challenge consists in reading 
a small document (^500-1,000 words) and identifying 
answers (from multiple choices) for a set of questions 
about the information that is expressed or implied in the 
text. The task is very difficult for an automatic system 
and ideally implies deep semantic analysis of the text. 
We proposed a methodology for its solution, built the 
corresponding system, and participated in the task (eval­
uation).

The test set 2013 based on the entrance exams task is 
composed of tests for reading comprehension taken from 
the Japanese Center Test (a nation-wide achievement

1 Conference and Labs of the Evaluation Forum; see 
http://www.clef-initiative.eu/
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auxpass-2

Fig. 3. Integrated Syntactic Graph of the paragraph presented in Figure 2

test for admission in Japanese universities). The data 
set is composed of the following elements:

— 12 test documents,

— 60 questions (5 questions for each document),

— 240 choices/options (4 for each question).

The principal measure used in the evaluation of the 
task is c@1, which is defined as shown in (31). This 
measure was defined in the QA4MRE task at CLEF 
2011 with the purpose of allowing the systems to decide 
whether or not to answer a given question. The aim 
of this procedure is to reduce the amount of incorrect 
answers, maintaining the number of the correct ones,
i.e., a system is penalized for answering incorrectly and 
it is better not to answer at all if not sure:

c@1 _  1  (n n  +  nu  —  )  , (31)
n n

where nn  is the number of the correctly answered ques­
tions, nu  is the number of the unanswered questions, 
and n  is the total number of questions.

3.2 Our Method for the Entrance Exam Task

Our system formulates several candidate “answer hy­
potheses” as the improved versions of the original ques­
tion, removing the cue words associated with the ques­
tions, such as who, where, which, and replacing them 
with one of the possible answers given in the test data. 
So, we have several “answer hypotheses”, which are 
then validated in order to determine the one that best 
matches, i.e., has the major similarity with the document 
itself. In the task we applied the traditional cosine mea­
sure, which we now substitute with the soft cosine.

For performing this, the text is transformed into an 
Integrated Syntactic Graph (explained in Section 3.3) for 
both the reference document and each of the answer 
hypotheses. We validated each one of these answer 
hypotheses by comparing their similarity with the refer­
ence document. The hypothesis that obtains the highest 
score is the one selected as the correct answer for 
the given question. Previously, we used the traditional 
cosine measure for the task evaluation and now we tried 
both equations for calculation of the soft cosine measure. 
The results show that the soft cosine similarity performs 
better in most cases.
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Representation schemes
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Extracted features

s
d

s
at

05oQ.

sTOat
ycne
dnepe

a
cicnlp-1 / / / / /
cicnlp-2 / / / / / /
cicnlp-3 / / / / / /
cicnlp-4 / / / / / / /
cicnlp-5 / / / / / /
cicnlp-6 / / / / / / /
cicnlp-7 / / / / / / /
cicnlp-8 / / / / / / / /

In the next sections we present a brief description 
of the Integrated Syntactic Graph (ISG) and the feature 
extraction process that we used in the task.

3.3 Construction of the Integrated Syntactic 
Graph

We construct the Integrated Syntactic Graph following 
the methodology presented in the research work [13]. 
The ISG can represent a sentence, a paragraph, a do­
cument or a collection of documents. Figure 2 shows 
the dependency trees of the first three sentences of the 
text. The construction of the graph starts with the first 
sentence of the text. We apply the dependency parser2 
and obtain the dependency tree of the first sentence. 
The parser generates a tree with the generic root node 
(ROOT), in which the rest of the sentences are attached 
in order to conform the integrated syntactic graph. Each 
node of the tree is augmented with other annotations, 
such as the combination of lemma (or word) and POS 
tags (lemma_POS).

After this, we perform similar actions for the second 
sentence of the text (Fig. 2b), using the dependency 
parser and attaching the obtained parsed tree to the 
ROOT. If there exists a repeated node, then, at the time 
of attaching the new tree, this node is not duplicated. 
Instead, the repeated node contracts with the existing 
node (i.e., in Figure 3, the node “of_IN” appears only 
once and all the relationships in the second and third

2In this work, we used the output generated by the Stanford 
parser: http://nlp.stanford.edu/software/lex-parser.
shtml

sentences are compressed into it). In this way, we create 
new connections of nodes (containing the same lemmas 
(or words) and POS tags) from different sentences that 
would not have existed otherwise.

In addition, we can expand the ISG using paradig­
matic semantic relations. The graph expansion results 
in the overlap of the higher nodes, when we compare 
two different graphs. The most widely used paradigmatic 
semantic relations are: antonymy, synonymy, inclusion 
of classes, part-whole, and case [1]. In order to extract 
semantic relations of words in a text, we used the Word- 
Net taxonomy [9]. For instance, in Figure 3, the node 
“foundation_NNP” can be expanded with the synonyms: 
“institution_NNP” and “endowment_NNP”, which are then 
linked to the same vertices in the graph corresponding 
to the original node “foundation_NNP”, direction of the 
edges is kept.

3.4 Feature Extraction from the ISG

We use shortest path walks in the graph for feature 
extraction. Note that the idea of using syntactic paths 
is similar to extraction of syntactic n-grams [19,21]. So, 
we use syntactic n-grams of various types as features. 
The procedure starts by selecting the root node of the 
graph as the initial node for the path traversal, whereas 
the final nodes correspond to the remaining nodes of the 
graph reachable from the initial node.

We used the Dijkstra algorithm [2] for finding the 
shortest path between the initial and the final nodes. 
While traversing the shortest paths, we construct the 
syntactic n-gram with the linguistic features found in
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Table 2. Results (c@1) using the Dijkstra path

Run

Levenshtein dist.
(for characters)

s o f t _ c o s i n e i  s o ft_ co sin e 2

Levenshtein dist.
(for n-grams)

s o f t _ c o s i n e \  s o ft_ co sin e 2 c o s in e

cicnlp-1 0.17 0.28 0.27 0.30 0.23
cicnlp-2 0.23 0.23 0.23 0.22 0.27
cicnlp-3 0.13 0.27 0.20 0.28 0.23
cicnlp-4 0.20 0.20 0.22 0.17 0.23
cicnlp-5 0.30 0.27 0.22 0.32 0.23
cicnlp-6 0.27 0.27 0.25 0.28 0.23
cicnlp-7 0.30 0.25 0.20 0.30 0.23
cicnlp-8 0.22 0.22 0.23 0.28 0.23

Table 3. Results (c@1) using all shortest paths

Run

Levenshtein dist.
(for characters)

s o f t .c o s in e - i  s o ft_ co s in e 2

Levenshtein dist.
(for n-grams)

s o f t . c o s i n e i  s o ft_ co sin e 2 c o s in e
cicnlp-1 0.20 0.25 0.22 0.25 0.22
cicnlp-2 0.25 0.30 0.20 0.27 0.30
cicnlp-3 0.10 0.25 0.20 0.28 0.22
cicnlp-4 0.23 0.22 0.23 0.18 0.23
cicnlp-5 0.28 0.27 0.17 0.28 0.23
cicnlp-6 0.32 0.27 0.25 0.30 0.25
cicnlp-7 0.32 0.22 0.17 0.30 0.23
cicnlp-8 0.23 0.18 0.22 0.30 0.23

the current path (including words (or lemmas), POS 
tags and dependency tags). For example, in Figure 3 
the shortest path between the node “ROOT-O” and the 
node “the -D T ’ is the path: “ROOT-0”, “name_NN” and 
“the_DT”. So, the syntactic n-gram is: ROOT-O root
name^NN nsubj the.DT. Note that we include relation 
names (dependency tags) in syntactic n-grams, i.e, in 
fact, we use mixed syntactic n-grams with names of 
syntactic relations [20].

4 Experimental Results

We presented eight versions of our method/system 
(eight runs) in the competition using various sets of 
features. Table 1 shows the features included in the ISG 
and which of those features were used in the feature 
extraction process for each of the eight configurations.

In the system cicnlp-1 we included for the nodes of 
the graph combination of words and POS tags and the 
dependency tags for the edges. The system cicnlp-2

uses stems of words for the nodes. The systems cicnlp- 
4 and cicnlp-5 contain in addition the frequency of the 
repeated pair of the initial and the final nodes, which are 
counted at the moment of the graph construction. The 
configurations of the systems cicnlp-5 to cicnlp-8 differ 
from the first one in the type of features extracted. The 
systems cicnlp-1 to cicnlp-4 use only POS tags and 
dependency tags for the n-gram conformation, while the 
systems cicnlp-5 to cicnlp-8 in addition include words 
for forming n-grams.

In Table 2, we observe the results, when the features 
were extracted using the Dijkstra algorithm for obtaining 
the shortest paths. The values are obtained using tradi­
tional cosine measure and the two soft cosine measures 
with both variants of the Levenshtein distance: mea­
sured in characters and in elements of n-grams. It shows 
that the soft cosine similarity obtain better results in most 
of the experiments. There were only two systems that 
could not achieve better performance than the traditional 
cosine measure: cicnlp-2 and cicnlp-4.
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Table 4. Results (c@1) using the expansion with synonyms

Run

Levenshtein dist.
(for characters)

s o f t _ c o s i n e i  s o ft_ co sin e 2

Levenshtein dist.
(for n-grams)

s o f t _ c o s i n e \  s o ft_ co sin e 2 c o s in e
cicnlp-1 0.35 0.32 0.28 0.35 0.28
cicnlp-2 0.45 0.37 0.33 0.37 0.33
cicnlp-3 0.27 0.28 0.18 0.35 0.25
cicnlp-4 0.30 0.40 0.28 0.35 0.25
cicnlp-5 0.37 0.30 0.30 0.33 0.22
cicnlp-6 0.42 0.40 0.33 0.35 0.25
cicnlp-7 0.40 0.30 0.37 0.33 0.23
cicnlp-8 0.40 0.38 0.35 0.37 0.25

Table 5. Results (c@1) using the expansion with hypernyms

Run

Levenshtein dist.
(for characters)

s o f t .c o s in e - i  s o ft_ co s in e 2

Levenshtein dist.
(for n-grams)

s o f t . c o s i n e i  s o ft_ co sin e 2 c o s in e
cicnlp-1 0.30 0.35 0.28 0.40 0.37
cicnlp-2 0.33 0.40 0.30 0.35 0.40
cicnlp-3 0.28 0.35 0.28 0.37 0.33
cicnlp-4 0.32 0.35 0.25 0.35 0.27
cicnlp-5 0.37 0.37 0.33 0.32 0.30
cicnlp-6 0.27 0.30 0.32 0.37 0.27
cicnlp-7 0.38 0.37 0.28 0.33 0.28
cicnlp-8 0.25 0.30 0.30 0.32 0.25

There can be several shortest paths in the graphs 
between the initial and the final nodes, i.e., several paths 
have the same length. Table 3 shows the results, when 
we use all shortest paths. In this set of experiments the 
systems built with the soft cosine measure were better 
(or equal) than the systems using the traditional cosine 
in all cases.

As we mentioned before, the graphs can be expanded 
with semantic paradigmatic relations. We expanded the 
graph with synonyms and conducted more experiments. 
We used the Dijkstra algorithm for obtaining the shortest 
paths. Table 4 presents the obtained results. The sys­
tems that use the soft cosine overcome the systems with 
traditional cosine.

We obtained here a very promising result: the best 
result of the competition was 0.42 [12], while one of 
our systems got 0.45. So, this system got the best 
performance in the competition. Let us remind that it was 
obtained only by using the soft cosine measure instead 
of the traditional cosine measure.

We also expanded the graphs used in these experi­
ments with hypernyms. Here we also used the Dijkstra 
algorithm for obtaining the shortest paths. The results 
are shown in Table 5. The soft cosine measure is better 
(or equal) than the traditional cosine in all cases.

5 Conclusion and Future Work

Calculation of similarity is the most used metric in infor­
mation retrieval and natural language processing. Usu­
ally, it is used with the representation based on the 
Vector Space Model. In this case, if we calculate the sim­
ilarity directly between objects, then the cosine measure 
is used. Note that we can also apply machine learning 
algorithms that interpret the Vector Space Model as a 
metric for similarity.

These models are quite effective, but it turns out that 
they can be improved if we take into account the similar­
ity of features in Vector Space Model. Traditional VSM 
considers that all features are completely different. It is 
not true in many tasks, for example, in natural language
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processing: words and n-grams can have a certain de­
gree of similarity.

In this paper, we have proposed the concepts of the 
soft similarity and the soft cosine measure, which are 
calculated precisely taking into account similarity of fea­
tures. Essentially, we add to the Vector Space Model 
new features by calculation of similarity of each pair of 
the already existing features, i.e., we construct the matrix 
of similarity for each pair of features and then use it. We 
proposed two equations for the soft cosine measure and 
tried several manners for measuring similarity using the 
Levenshtein distance. Note that if the features are similar 
only to themselves, i.e., the matrix of similarity has 1s 
only at the diagonal, then these equations are equal to 
the traditional cosine equation.

We made a study of applicability of the soft cosine 
measure for a specific question answering task: en­
trance exams task at CLEF. The soft cosine measure 
obtained better results as compared with the traditional 
cosine measure in the majority of cases. In our experi­
ments, this measure even obtained the best score for the 
competition (it is not the official score, though, because 
it was obtained after the competition).

In future, we would like to experiment with more types 
of similarity functions, for example, add the well-known 
WordNet similarity functions. It should be analyzed also 
which features benefit from the soft cosine measures, 
and which do not.
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