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Abstract. This paper presents an application of adaptive
neural networks based on a dynamic neural network to
trajectory tracking of unknown nonlinear plants. The
main methodologies on which the approach is based
are recurrent neural networks and Lyapunov function
methodology and Proportional-Integral (PI) control for
nonlinear systems. The proposed controller structure is
composed of a neural identifier and a control law defined
by using the PI approach. The new control scheme
is applied via simulations to Chaos Synchronization.
Experimental results have shown the usefulness of the
proposed approach for Chaos Production. To verify the
analytical results, an example of a dynamical network is
simulated and a theorem is proposed to ensure tracking
of the nonlinear system.

Keywords. Dynamic neural networks, chaos produc-
tion, chaos synchronization, trajectory tracking, Lya-
punov function stability, PI control.

Seguimiento de trayectorias para
sincronización de caos vı́a ley de

control PI entre Roosler-Chen

Resumen. Este artı́culo presenta la aplicación de redes
neuronales adaptables, basada sobre una red neuronal
dinámica, para seguimiento de trayectorias de plantas
no lineales desconocidas. La principal metodologı́a,
sobre el cual la aproximación es basada, son redes
neuronales recurrentes, metodologı́a de las funciones
de Lyapunov y control Proporcional-Integral (PI) para
sistemas no lineales. La estructura del controlador prop-
uesto es compuesta de un identificador neuronal y una
ley de control definida usando la aproximación PI. El
nuevo esquema de control es aplicado vı́a simulación
para sincronización de caos. Resultados experimentales
han mostrado la utilidad del enfoque propuesto para la
producción de caos. Para verificar el resultado analı́tico,

un ejemplo de una red dinámica es simulado y un teo-
rema es propuesto para asegurar el seguimiento del
sistema no lineal.

Palabras clave. Red neuronal dinámica, producción de
caos, sincronización de caos, seguimiento de trayecto-
rias, estabilidad de funciones de Lyapunov, control PI.

1 Introduction

Artificial neural networks as computational models
of the brain are widely used in engineering appli-
cations due to their ability to estimate the relation
between inputs and outputs from a learning pro-
cess. Motivated by the seminal paper [1], there
exists a continuously increasing interest in apply-
ing neural networks to identification and control of
nonlinear systems. Most of these applications use
feedforward structures [2, 3]. Recently, recurrent
neural networks were developed as an extension of
the static neural network capability to approximate
nonlinear functions, therefore recurrent neural net-
works can approximate nonlinear systems. They
allow more efficient modeling of the underlying dy-
namical systems [4].

Three representative books [5, 6, 7] reviewed the
application of recurrent neural networks to nonlin-
ear system identification and control. In particular,
[5] uses off-line learning, while [6] analyzes adap-
tive identification and control by means of on-line
learning, where stability of the closed-loop sys-
tem is established based on the Lyapunov function
method. In [6], the trajectory tracking problem is re-
duced to a linear model following problem, with ap-
plication to DC electric motors. In [7], analyses of
Recurrent Neural Networks for identification, esti-
mation and control are developed, with applications
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to chaos control, robotics and chemical processes.
Main approaches include the use of differential ge-
ometry theory [8]. Recently, the passivity approach
has generated increasing interest for synthesizing
control laws [9]. An important problem for these
approaches is how to achieve robust nonlinear con-
trol in the presence of unmodelled dynamics and
external disturbances. In this direction, there exists
the so-called H∞ nonlinear control approach [10].

One major difficulty with this approach, along-
side with its possible system structural instability,
seems to be the requirement of solving some re-
sulting partial differential equations. In order to
alleviate this computational problem, the so-called
inverse optimal control technique was recently de-
veloped, based on the input-to-state stability con-
cept [11]. On the basis of the inverse optimal con-
trol approach, a control law for generating chaos
in a recurrent neural network was designed in [12].
In [13, 14] this methodology was modified for sta-
bilization and trajectory tracking of an unknown
chaotic dynamical system. The proposed adaptive
control scheme is composed of a recurrent neural
identifier and a controller, where the former is used
to build an on-line model for the unknown plant and
the latter, to ensure the unknown plant to track the
reference trajectory. In this paper, we further im-
prove the design by adequating it to systems with
less inputs than states. The approach is based on
the methodology developed in [13, 14], in which the
control law is optimal with respect to a well-defined
Lyapunov function.

The new approach is illustrated by Chaos Syn-
chronization as an example of a complex dynami-
cal system.

2 Modeling of the Plant

The unknown nonlinear plant is given by

·
xp = Fp(xp,u) , fp(xp) + gp(xp)u, (1)

where xp, fp ∈ Rn, u ∈ Rm,and gp ∈ Rn×m. xp is
the plant, u is the control input and both fp and
gp are unknown. We propose to model (1) by
the neural network state space representation

·
xp

= Ax + W ∗Γz(x) + Ωu, plus one more modeling
error term. A is a n × m matrix; without loss of

generality we can assume that A = λI, λ > 0.
x are the neural states, giving an approximation
to the real plant by a neural network, W ∗ is the
weights matrix, Γz(x) is the hyperbolic tangent and
Ω is n×m matrix that modifies the input u.

We define the modeling error between the neural
network and the plant by

wper = x− xp. (2)

We assume the following.
Hypotheses 1. (Objective of Modeling): Model-

ing error is exponentially stable, that is,

·
wper = −kwper. (3)

This condition guarantees that wper → 0 when
t→∞ and it is usually found in dynamical systems
that model real applications.

In this work we consider k = 1, and now, from
(2) we have

·
wper=

·
x− ·xpwhere:

·
xp=

·
x+ wper

The unknown plant can be modeled as

·
xp =

·
x+wper = A(x)+W ∗Γz(x)+wper+Ωu. (4)

W ∗ are the fixed but unknown weights from the
neural network. They minimize the modeling error.

3 Trajectory Tracking

We proceed now to analyze the modeling error
between the unknown plant modeled by (4) and the
reference signal defined by

·
xr = fr(xr,ur), with ur and xr ∈ Rn, (5)

where xr are the reference states, ur is the input
and fr is a nonlinear function.

For this purpose, we define the control error
between the plant and the reference signal by

e = xp − xr, (6)

whose derivative with respect to time is

·
e =

·
xp −

·
xr

= A(x) +W ∗Γz(x) + wper (7)
+ Ωu− fr(xr,ur).
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Adding and subtracting to the right hand side

from (7) the terms
_

WΓz(xr), αr(t,
_

W ), Ae, where
_

W is the estimate of W ∗ and taking into account
that wper = x− xp, we have

·
e = A(x) +W ∗Γz(x) + x− xp + Ωu− fr(xr,ur)

+
_

WΓz(xr)−
_

WΓz(xr) + Ωαr(t,
_

W )

−Ωαr(t,
_

W ) +Ae−Ae,

·
e = Ae+W ∗Γz(x) + Ωu+ (−fr(xr,ur)

+
_

WΓz(xr) + Ωαr(t,
_

W )−
_

WΓz(xr) (8)

−Ωαr(t,
_

W )− e− xr −Ae+ x+A(x).

In this part, we consider the following supposi-
tion: the neural network will follow the reference
signal, even with the presence of disturbances if

Axr +
_

WΓz(xr) +xr−xp+ Ωαr(t,
_

W ) = fr(xr,ur).

Then

Ωαr(t,
_

W ) = fr(xr,ur)−Axr −
_

WΓz(xr)− xr + xp
(9)

and we get

·
e = Ae+W ∗Γz(x)−

_

WΓz(xr)−Ae
+(A+ I)(x− xr) (10)

+Ω(u− αr(t,
_

W )).

Now, adding and subtracting in (10) the term
_

W
Γz(x) and defining Γz(x) = Γ(z(x)−z(xr)) we have

·
e = Ae+ (W ∗ −

_

W )Γz(x) +
_

WΓ(z(x)− z(xr))

+(A+ I)(x− xr)−Ae+ Ω(u− αr(t,
_

W )).(11)

We define

∼
W = W ∗ −

_

W and
∼
u = u− αr(t,

_

W ) (12)

and replacing (12) in (11), we obtain

·
e = Ae+

∼
WΓz(x) +

_

WΓ(z(x)− z(xr))
+(A+ I)(x− xr)−Ae+ Ω

∼
u,

·
e = Ae+

∼
WΓz(x) +

_

WΓ(z(x)− z(xp) + z(xp)

−z(xr)) + (A+ I)(x− xp + xp − xr)
−Ae+ Ω

∼
u. (13)

Now we set

∼
u = u1 + u2. (14)

So we define

Ωu1 = −
_

WΓ(z(x)− z(xp))− (A+ I)(x− xp) (15)

and (13) is reduced to

·
e = Ae+

∼
WΓz(x) +

_

WΓ(z(xp)− z(xr))
+(A+ I)(xp − xr)−Ae+ Ωu2.

Considering that e = xp − xr, the last equation
can be written as

·
e = (A+I)e+

∼
WΓz(x)+

_

WΓ(z(e+xr)−z(xr))+Ωu2,

·
e = (A+I)e+

∼
Wσ(x)+

_

W (σ(e+xr)−σ(xr))+Ωu2.

If φ(e) = σ(e+ xr)− σ(xr), we get

·
e = (A+ I)e+

∼
Wσ(x) +

_

Wφ(e) + Ωu2. (16)

Now the problem is to find the control law Ωu2
that stabilizes the system (16). We will obtain the
control law by using the Lyapunov methodology.
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4 Stability of the Tracking Error

Once (16) is obtained, we consider its stabilization
in feedforward networks. We note that (e,

_

W )= 0
is an asymptotically stable equilibrium point of the
undisturbed autonomous system (A = −λI and
λ > 0). For its stability, we propose the next PI
control law:

Ωu2 = Kpe+Ki

∫ t

0

e(τ)dτ −Υ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)e.

(17)

The parameters Kp and Ki will be determined
later, and L2

φz is the Lipschitz constant of φz, with
Υ > 0.

We will show that the feedback system is asymp-
totically stable. Replacing (17) in (16), we obtain

·
e = (A+ I)e+

∼
Wσ(x) +

_

Wφ(e)

+Kpe+Ki

∫ t

0

e(τ)dτ (18)

−Υ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)e,

·
e = −(λ− 1−Kp)e+

∼
Wσ(x) +

_

Wφ(e)

+Ki

∫ t

0

e(τ)dτ (19)

−γ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)e,

and if w = Ki

∫ t
0
e(τ)dτ , then

•
w = Ki e(τ)dτ , so we

can rewrite (19) as

·
e = −(λ− 1−Kp)e+

∼
Wσ(x) +

_

Wφ(e) + w

−γ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)e. (20)

We will show that the new state (e,w)T is asymp-
totically stable and that the equilibrium point is

(e,w)T = (0, 0)T , when
∼
Wσ(xr) = 0, which is taken

as an external disturbance.

Let V be the candidate Lyapunov function
given by

V =
1

2
(eT ,wT )(e,w)T +

1

2
tr

{
∼
W

T

W̃

}
. (21)

The time derivative of (21) along the trajectories
of (20) is

·
V = (eT ,wT ) (

•
e,
•
w)T + tr


·∼
W

T
∼
W


= eT

·
e+ wT

•
w + tr


·∼
W

T
∼
W

 , (22)

·
V = eT (−(λ− 1−Kp)e+

∼
Wσ(x) +

_

Wφ(e)

+w + wTKie− γ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ))e

+tr


·∼
W

T
∼
W

 . (23)

In this part, we select the following learning law
from the neural network weights as in [6] and [15]:

tr


·∼
W

T
∼
W

 = −eT
∼
Wσ(x). (24)

Then (23) is reduced to

·
V = −(λ− 1−Kp)e

T e+ eT
_

Wφ(e)

+(1 +Ki)e
Tw

−γ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)eT e. (25)

We apply the next inequality to the second term
in the right hand side of (25)

xT y ≤ 1

2
xTx+

1

2
yT y (26)
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to get

·
V ≤ −(λ− 1−Kp)e

T e+ (
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)eT e

+(1 +Ki)e
Tw (27)

−γ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)eT e.

The parameters in (27) are reduced to

·
V ≤ −(λ−1−Kp)e

T e−(Υ−1)(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)eT e.

(28)
Here, if we choose λ−1−Kp > 0, and Υ−1 > 0,

then
·
V < 0, ∀ e,w,

_

W 6= 0, the error tracking is
asymptotically stable and it converges to zero for
every e 6= 0, this means that the plant follows the
reference asymptotically. Finally, the control law
which affects the plant and the neural network is
given by

u = Ω†[−
_

WΓ(z(x)− z(xp))− (A+ I)(x− xp)

+Kpe+Ki

∫ t

0

e(τ)dτ −Υ(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)e

+fr(xr,ur)−Axr −
_

WΓz(xr)− xr + xp].(29)

Remark 1 Ω† is the pseudo inverse in the sense
of Moore–Penrose.

This control law gives asymptotic stability of error
dynamics and thus ensures the tracking to the
reference signal. The results obtained can be
summarized as follows.

Theorem 2 For the unknown nonlinear system (1)
modeled by (4), the on-line learning law (24) and
the control law (29) together ensure the tracking to
the nonlinear reference model (5).

Remark 3 From (28) we have

·
V ≤ −(λ− 1−Kp)e

T e−

(Υ− 1)(
1

2
+

1

2

∥∥∥_W∥∥∥2 L2
φ)eT e < 0,∀e 6= 0,∀

_

W .

where V is decreasing and bounded from below
by V (0), and then V = 1

2 (eT ,wT )(e,w)T +

1
2 tr

{
∼
W

T

W̃

}
.

We conclude that e,
∼
W ∈ L1; this means that the

weights remain bounded.

5 Simulations

In order to demonstrate the applicability of the
proposed adaptive control scheme, the following
example is tested.

In this example, the unknown plant considered is
Chen´s chaotic attractor generated by

•
xp1 = 35xp2 − 35xp1, xp1(0) = −10,
•
xp2 = −7xp1 − xp1xp3 + 28xp2, xp2(0) = 0,
•
xp3 = xp1xp2 − 3xp3, xp3(0) = 37. (30)

The goal is to force the chaotic Chen´s at-
tractor to track the reference—the Roosler attrac-
tor—generated by

•
xr1 = −xr2 − xr3, xr1(0) = 0.1,
•
xr2 = xr1 + 0.2xr2, xr2(0) = 0, (31)
•
xr3 = xr1xr3 − 5.7xr3 + 0.2, xr3(0) = 0.

In the simulations, the following dynamic neural
network was used:

•
x = Ax+W ∗Γz(x) + Ωu (32)

with

A =

 −5 0 0
0 −5 0
0 0 −5


and

Γ =

 150 0 0
0 150 0
0 0 150

 ,

while

z(x) =

 tanh(0.5x1)
tanh(0.5x2)
tanh(0.5x3)

 .
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Fig. 2. X Plant Chen-X Reference Roosler

W ∗ is estimated using the learning law given in
(24), and the u is calculated using (29).

The results of simulations are shown in Figures
1-11, where the time evolution of the states and
phase portraits are presented.

We can see that the Recurrent Neural Controller
ensures rapid convergence of the system outputs
to the reference trajectory [17]. Another important
issue of this approach related to other neural con-
trollers is that most neural controllers are based on
indirect control: firstly, the neural network identifies
the unknown system and when the identification
error is small enough, the control is applied. In our
approach, direct control is considered, the learning
laws for the neural networks depend explicitly on
the tracking error instead of the identification error.
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Fig. 3. YPlant Chen-Yref Roosler

0 5 10 15 20 25
-30

-20

-10

0

10

20

30

Plant

reference

Fig. 4. Y Plant Chen-Y Reference Roosler

This approach results in faster response of the
system.

6 Conclusions

We have extended the adaptive recurrent neural
control previously developed in [13,14,16] to trajec-
tory tracking control problem in order to consider
less inputs than states. Stability of the tracking
error is analyzed via Lyapunov control functions
and the control law is obtained based on the PI
approach. A new adaptive control structure based
on a dynamic neural network for chaotic orbit track-
ing of unknown nonlinear systems has been de-
veloped. This structure is composed of a neural
network identifier and a control law for orbit track-
ing. Stability of the tracking control system has
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Fig. 5. ZPlant Chen-Zref Roosler
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Fig. 6. Z Plant Chen-Z Reference Roosler
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Fig. 7. ZPlant Roosler-Zref Chen

also been established by means of the Lyapunov
function method.
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Fig. 8. Aphase space trajectory. Roosler tracks Chen
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Fig. 9. Aphase space trajectory. Chen tracks Roosler

The applicability of the proposed structure was
tested via simulations, using Chaos Synchroniza-
tion as an example of a complex dynamical system.
The results are quite encouraging. Research along
this line will consist in further relaxing the required
condition of having the same number of inputs and
states in the control system. Also, we will continue
to implement the control algorithm in real time and
to perform more tests in a laboratory.

Acknowledgements

The first two authors appreciate the support of
CONACYT, Mexico, and the Matematicas Apli-

USUARIO
Cuadro de texto
Trajectory Tracking for Chaos Synchronization via PI Control Law between Roosler-Chen 405

USUARIO
Cuadro de texto
Computación y Sistemas Vol. 18 No. 2, 2014 pp. 399-407ISSN 1405-5546http://dx.doi.org/10.13053/CyS-18-2-2014-040



-30 -20
-10 0

10 20
30

-50

0

50

0

10

20

30

40

50

X-Xr

Y-Yr

Z
-
Z

r

Plant

Reference

Fig. 10. XPlant Roosler-Xref Chen

-10
-5

0
5

10
15

-20

-10

0

10

-10

0

10

20

30

40

X-XrY-Yr

Z
-
Z

r

Plant

Reference

Fig. 11. YPlant Roosler-Yref Chen

cadas Group of the Facultad de Ciencias Fisico-
Matematicas, UANL, Mexico.

References

1. Gupta, M.M. & Rao, D.H. (Eds.) (1994). Neuro-
Control Systems, Theory and Applications. IEEE
Press, Piscataway, N.J., USA.

2. Hunt, G.I. & Warwick, K. (Eds.) (1995). Neu-
ral Networks Engineering in Dynamic Control Sys-
tems. Springer Verlang, New York, USA.

3. Poznyak, A.S., Yu, W., Sanchez, E.N., & Perez,
J.P. (1999). Nonlinear adaptive trajectory tracking
using dynamic neural networks. IEEE Trans. on
Neural Networks, 10(6), 1402–1411.

4. Narendra, K.S. & Parthasarathy, K. (1990). Iden-
tification and control of dynamical systems using
neural networks. IEEE Trans. on Neural Networks,
1(1), pp. 4–27.

5. Suykens K., Vandewalle, L., & De Moor, R.
(1996). Artificial Neural Networks for Modelling and
Control of Nonlinear Systems. Kluwer academic
Publishers, Boston, USA.

6. Rovitahkis, G.A. & Christodoulou, M.A. (2000).
Adaptive Control with Recurrent High-Order Neural
Networks. Springer Verlang, New York, USA.

7. Poznyak, A.S., Sanchez, E.N., & Yu, W. (2000).
Differential Neural Networks for Robust Nonlinear
Control. World Scientific, USA.

8. Isidori, A. (1995). Nonlinear Control Systems. 3rd
Ed., Springer Verlang, New York, USA,1995.

9. Hill, D.J. & Moylan, P. (1996). The Stability of
nonlinear dissipative systems. IEEE Trans. on Auto.
Contr., vol. 21, 708–711.

10. Basar, T. & Bernhard, P. (1995). H-Infinity Opti-
mal Control and Related Minimax Design Problems.
Birkhauser, Boston, USA.

11. Krstic, M. & Deng, H. (1998) Stabilization of Non-
linear Uncertain Systems. Springer Verlang, New
York, USA.

12. Sanchez, E.N., Perez, J.P. & Chen, G. (2001). Us-
ing dynamic neural control to generate chaos: An
inverse optimal control approach. Int. J. Bifurcation
and Chaos.

13. Sanchez, E.N., Perez, J.P., Ricalde, L., & Chen,
G. (2001). Trajectory tracking via adaptive neural
control. In Proceeding of IEEE Int. Symposium on
Intelligent Control, Mexico City, pp. 286–289.

14. Sanchez, E.N., Perez, J.P., Ricalde, L., & Chen,
G. (2001). Chaos production and synchronization
via adaptive neural control. In Proceeding of IEEE
Conference on Decision and Control, Orlando, Fl,
USA.

15. Ioannou, P.A. & Sun, J. Robust Adaptive Control.
PTR Prentice-Hall, Upper Saddle River, NJ 07458.

16. Astrom, K.J. & Wittenemark, B. (1989). Adaptive
Control. Addison-Wesley Publishing Company.

17. Perez P., J., Perez, J.P., Soto, R., Flores, A.,
Rodriguez, F., & Meza, J.L. (2012). Trajectory
Tracking Using PID Control Law for Two-Link Robot
Manipulator via Adaptive Neural Networks. In The
2012 Iberoamerican Conference on Electronics En-
gineering and Computer Science.

USUARIO
Cuadro de texto
406 Joel Perez Padron, Jose Paz Perez Padron, Francisco Rodriguez Ramirez…

USUARIO
Cuadro de texto
Computación y Sistemas Vol. 18 No. 2, 2014 pp. 399-407 ISSN 1405-5546 http://dx.doi.org/10.13053/CyS-18-2-2014-040



Joel Perez Padron obtained his
B.Sc. degree in Mathematics in
1991, from the Faculty of Physi-
cal and Mathematical Sciences,
a Master’s degree in Electrical
Engineering with specialization
in Control in 2001, from the Fac-
ulty of Mechanical and Electri-

cal Engineering, and a Ph.D. in Industrial Physics
Engineering with specialization in Control in 2008,
from the Faculty of Physical and Mathematical Sci-
ences of Nuevo Leon Autonomous University.

Jose Paz Perez Padron ob-
tained his B.Sc. degree in Math-
ematics in 1990, from the Fac-
ulty of Physical and Mathemat-
ical Sciences, a Master’s de-
gree in Electrical Engineering
with specialization in Control in
1999, from the Faculty of Me-

chanical and Electrical Engineering, and a Ph.D.
in Science in Electrical Engineering in 2004, from
the Cinvestav-Gdl.

Francisco Rodriguez Ramirez
obtained his B.Sc. degree in
Physics in 1989, from the Fac-
ulty of Physical and Mathemat-
ical Sciences, and a Ph.D. in
Sciences with specialization in
Mathematics in 2014, from the
Faculty of Physical and Mathe-

matical Sciences of Nuevo Leon Autonomous Uni-
versity.

Angel Flores Hernandez ob-
tained a degree in Electronics
and Communications Engineer-
ing in 1997, from the Faculty of
Mechanical and Electrical Engi-
neering and currently is pursu-
ing his Ph.D. degree in Industrial
Physics Engineering with spe-

cialization in Control at the Faculty of Physical
and Mathematical Sciences of Nuevo Leon Au-
tonomous University. He completes his Ph.D. stud-
ies in August, 2014.

Article received on 22/10/2012; accepted on 21/09/2013.

USUARIO
Cuadro de texto
Computación y Sistemas Vol. 18 No. 2, 2014 pp. 399-407ISSN 1405-5546http://dx.doi.org/10.13053/CyS-18-2-2014-040

USUARIO
Cuadro de texto
Trajectory Tracking for Chaos Synchronization via PI Control Law between Roosler-Chen 407




