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Abstract. In digital filter theory, the identification 

process describes internal dynamic states based on a 
reference system, commonly known as a black box. 
The identification process as a function of: a) transition 
function, b) identified delayed states, c) gain function 
which depends on convergence correlation error, and 
d) an innovation process based on the error described 
by the differences between the output reference system 
and the identification result. Unfortunately, in the black 
box concept, the exponential transition function 
considers the unknown internal parameters. This 
means that the identification process does not operate 
correctly because its transition function has no access 
to the internal dynamic gain. An approximation for 
solving this problem includes the estimation in the 
identification technique. This paper presents an 
estimation for a "single input single output" (SISO) 
system with stationary properties applied to internal 
state identification. 

Keywords. Digital filter, estimation, functional error, 

identification, stochastic gradient, reference model. 

Estimación de parámetros internos 
para sistemas tipo caja negra 

Resumen. En teoría de filtro digital, el proceso de 

identificación describe los estados internos del sistema 
de referencia comúnmente conocido como caja negra. 
El proceso de identificación está en función de: a) la 
función de transición, b) los estados identificados  
retardados, c) la función de ganancia descrita por el 
error de correlación y, d) por el proceso de innovación 
basado en el error descrito por las diferencias entre el 
sistema de referencia de salida y el resultado de la 
identificación. Desafortunadamente, con respecto a la 
caja negra, la función de transición considera a un 
exponencial con los parámetros internos desconocidos. 
Esto significa que el proceso de identificación no es 

posible desarrollarlo adecuadamente debido a que su 
función de transición no tiene acceso a esos 
parámetros. Una aproximación para resolver este 
problema es usar una técnica de estimación. En este 
trabajo se presenta la estimación para un sistema con 
una sola entrada y una salida (UEUS o en sus siglas 
en inglés SISO) con propiedades estacionarias, 
aplicado dentro de un identificador para describir el 
estado interno del sistema de referencia. 

Palabras clave. Filtro digital, estimador, funcional de 

error, identificación, gradiente estocástico, modelo 
de referencia. 

1 Introduction 

A physical system requires validation by 
mathematical models with respect to different 
processes. Therefore, the difference between a 
real system and its mathematical representation 
tends to be very small in certain sense, usually in 
the probability form. A specific mathematical 
model establishes a relationship between its input 
and output signals, through the transfer function 
which considers unknown parameters. 

A black box system only allows knowing the 
transfer function without accessing its internal 
dynamics in a direct form. For this, it is necessary 
to perform the identification process [1-3], i.e., to 
describe the internal states according to their 
inputs and outputs. In turn, the identification 
technique is dependent from its transition function 
[4] as the primitive in a differential equation, which 
also includes its internal gain [5]. The maximum 
error allowed between the system and the filter 
signal is the interval [0, 1]. Fig. 1 describes the 
digital filter action with identification. 
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The simplest identification technique uses the 
interpolation methods, approximating the function 
results to the system response [6]. The 
interpolation has a parameter set playing an 
important role in the system response 
convergence [7].  

Once obtained, the interpolation function 
converges in a certain sense to the system 
response. It is a basic model for black box 
output tracking. 

In control theory, a model is commonly a set of 
states, when the black box states space depends 
of the hidden internal parameters and states [8, 
9]. The states space form reduces the problem of 
estimation of a functional that depends on the 
system output. In a discrete form, they are 
described as the recursive model [10]. Once the 
internal states are identified and the parameters 
are estimated, the model response requires an 
adaptation algorithm adjusting the parameters at 
the second step for improving the convergence, 
and consequently, the model response becomes 
good enough in a probability sense [11]. 

In a SISO system, with the input and the 
output bounded, it is possible to have linear and 
stationary relationship if the domain conditions 
are invariant [12] in the probability sense, 
according to [2, 3]. Conditions are achieved 
through their stability properties in relation to the 
proposed transition function, but in its description 
there also exists an unknown parameter [13, 14]. 
The traditional identification of this parameter is 
not feasible, because the system gain applied to 
the transition function is inside the black box. So, 
we require the estimation process [15]. The black 
box identification is a function of the transition 

function, probability moments and the criterion 
that affects the dynamical filter, converging to the 
reference signal [16, 17]. 

In the identification filter, it is necessary to 
know the role of the transition and its parameters 
through the second probability moment. Once the 
internal parameter has an estimated value, the 
transition function has sense and the internal 
identification state has specific results. The 
estimation based on the gradient of the second 
probability moment has the parameter evolution. 
The stationary conditions, which are considered in 
the estimation technique, allow the identification 
in recursive form through the estimation. The 
simulation considers a reference model for 
estimation, identification and for the interaction 
between them, as shown in Fig. 2. 

2 Experiments 

Considering that the estimation is responsible for 
the description of the internal black box 
parameters through their output signals and 
remembering that the transition function is a 
function of unknown parameters: is it possible to 
estimate the parameters for finding the transition 
function that affects the identification filter? Our 

 

Fig. 2. Digital filter scheme 

 

Fig. 3. Black-box system scheme  

 

Fig. 1. Digital filter scheme 
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answer is yes. We can provide the identification 
convergence using the functional error. This is 
generated by the second probability moment 
between the difference of the actual observable 
condition and the identification result.  

Estimation is a part of the identification 
process. What can improve the identification 
response? We consider that the adaptive 
technique can improve the results. It uses the 
functional error that affects the estimation results, 
adjusting the parameter to the goal state.  

This paper describes an estimator integrated 
in an identification technique. The considered 
system is a first-order stochastic model for 
invariants' conditions, as shown in Fig. 3. 

According to [18], the reference system 
described by the weapon process in space states 

[19] has the form kkkkk vbxax 1 , with the 

output kkkkk wdxcy  , as shown in Fig. 3, where

 0),( kkw  is a discrete stochastic process 

represented symbolically by 

 ,...2,1,0, 210   iiik kkkw
i , such that for any 

arbitrary set of points  ik  there is a distribution 

associated with random variables 
ikw  for 

,...,2,1,0i  Zn .  

The process is Gaussian, if for any finite set of 

points 00 ik , 11 ik , ,...22 ik nk ni  and their 

corresponding random variables, there exists 

mutually exclusive normal distribution for all ik . 

It is called Gaussian Stochastic Process 

expressed as ),,( 2 
kk wwkN  . In the same way, 

for  0, kvk  there also exists a Gaussian 

Stochastic Process ),( 2  wvkN  . 

Fig. 3 describes a states space black box 
system that includes perturbations, which alter 

both internal ( kv ) and external ( kw ) values. 

Inside the dashed line, we describe hypothetically 
the unknown parameter for a SISO 
stationary condition. 

3 Results 

Theorem 1 (Adaptive parameter estimation). 
Consider that the stochastic model of first order 
expressed in finite differences describes 
a system: 

kkkkk vbxax 1 ;   kkkkk wdxcy  . (1) 

It has a bounded time of evolution k  

according to [20], where 
k

f
max is the frequency 

representing the system. It is bounded with


k

f
max  [21] with respect to  0),( kkw  and 

 0),( kkv  like a discrete stochastic processes. 

The estimator based on identification state kŷ

has the form  

     12
11 ˆ

~̂


 kkkk yEyyEa
.  

(2) 

Proof (Theorem 1). Consider the error function 
recursively in  

  ))1(( 1
21

 kkkk JkeEJ . (3) 

The error is defined as the difference

kkk yye ˆ:  . 

Clearing the state 𝑥𝑘 of the system output (1), 
we obtain 

11   kkkkkk cwdcyx . (4) 

Substituting (4) in (1) we have  

kkkkkkkkk vbwdcycax  
 )( 11
1 . (5) 

If the noises kk
1

kkkkk wdcavb:   and (5) 

are delayed and then both substituted in (1), 
we get 

kkk yay  1
~ , (6) 

where kkkkkkkkk wdccaca  

 1
1
11 ,~  . After 

substituting the output in (6), the identification 
error has the form  
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kkkk yyae ˆ~
1    . (7) 

Developing the square ke according to (3), we 

obtain  

).ˆˆ~~(2

ˆ~

11

222

1

22

kkkkkk

kkkk

yyyaya

yyae











  (8) 

Now, using the functional of (3) in (8), we get  

     
   

  .))1())ˆ

ˆ~~(2

ˆ~(

1

11

222

1

21













kkk

kkkk

kkkkk

JkyE

yyEayEa

yEEyEaJ






 

(9) 

The stochastic gradient in (9) with respect to 

ka~  is described as 

 

   ).ˆ(2

~2

11

2

1~

kkkk

kkak

yyEyE

yEaJ











 
(10) 

This generates an equilibrium point at the 
origin equation resulting in  

   
  .0)ˆ

(2~2

1

2

1

2

1









kk

kkkk

yyE

yEyEa   
(11) 

The estimation with disturbance is  

 
 

   .
ˆ~~ 12

1

1
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 k

kk

kk

k yE
yE

yyE
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(12) 

The description in (12) is based on the 

identified state kŷ  without noise, as described in 

(2), where ( ka~~ kâ~ ), i.e., the estimator has the 

form  

     12
11 ˆ

~~


 kkkk yEyyEa .■ (13) 

Theorem 2 (recursive estimation). The model 
(2) with the invariance properties is described 
recursively in  

kkkk Sama
~~̂~̂

1   , (14) 

where ka~ˆ  is in (2).  

Proof of Theorem 2. Considering that (2) is a 
stationary process we obtain  

1

1

2
1

1

1
1

ˆ
1~̂









 


























 

k

i

i

k

i

iik y
k

yy
k

a , (15) 

where the numerator of (15) is described in (16) 

and denoted as kp : 





k

i

iik yy
k

p
1

1 ˆ
1

: . (16) 

For delayed kp  we get  











1

1

11 ˆ
1

1
k

i

iik yy
k

p . (17) 

If we consider (17) in (16), we obtain (18) in 
the recursive form: 









  11 )1(ˆ

1
kkkk pkyy

k
p

. 
(18) 

After substituting (18) in (15), we get  

1
11 )1(ˆ

1~̂ 
 












 kkiik qpkyy

k
a . (19) 

After this, we multiply (19) by the quotient

  1
1k1k

qq


 , where 
1

kq is the denominator of 

(15) considering that   1

111 :~̂ 

  kkk qpa . It allows 

us to get  

  1
k1k1kk1kk qqa1kyy

k

1
a


  ~̂)(ˆ~̂ . (20) 

In (21) we present the separation terms 
considered as  
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ˆ~̂)(~̂ , (21) 

whose states have the form  

1
1

)1(
:





 kkk qq

k

k
m

1
kk1kk qyy

k

1
s


 ˆ~ . 

(22) 

Now, considering (22) applied in (21), we 
have (14). ■ 

Once we obtained the recursive parameter 
according to the identification, it is possible to 
identify the second estimation step.  

Theorem 3 (SISO system identification of the 
internal states). The internal state of the system 

( kx ) described in (1) has the identifier  

kkkkk wsxax ˆ~ˆ~̂ˆ 1  . (23) 

In optimal form of ks
~ it has the structure  

  ;~̂~ ,112 k
kkkkkkk RJccJas 


  (24) 

when with the error described in (11), the 
functional error based on the second probability 
moment and noise variance are present in 

 2: kk eEJ 
,

 2: kk wER 

k
kkkk RJca ,1,,,  . 

(25) 

Proof of Theorem 3. The identifier expressed in 

(23) is relative with respect to the internal ( kx ) 

and its identifier ( kx̂ ) is described in (1) having 

the identification error as 

)ˆ~ˆ~̂(1 kkkkkkkkk wsxavbxae  . (26) 

Now, (27) is the innovation process:  

kkkk xcyw ˆˆ:ˆ  . (27) 

In (28) we present the result of substituting 
(27) in (26): 

  kkkkkkkkkkk xcysxavbxae ˆˆ~ˆ~̂
1 

. (28) 

The error described in (29) considers that the 

observable signal ( ky ) in (27) is substituted by 

(1) as well as k
ptcMk

k ww
..

ˆlim 


. Grouping terms, we 

get the form 

    kkkkkkkkkkkkk wsxcsavbxcsae ~ˆ~~̂~
1  . (29) 

The eigenvalues     ),1,0()~̂( kaki   satisfy the 

stable discrete system conditions and whereas 

 kkk csa ~~̂ 
 
is a common factor between the internal 

states of the reference system ( kx ) and the 

identified state ( kx̂ ), i.e., the error has the form 

   kkkkkkkkkkk wsvbxxcsae ~ˆ~~̂
1  .

 
(30) 

Defining the internal state error )(:)( kkk xxxe  , 

which is proportional to the error of the 

observable states 
kk exe )(  according to (30), we 

obtain the form  

  kkkkkkkk wsbvecsae ~~~̂
1  , (31) 

when  kkkk csaa ~~̂:~~  . If in the expression (31) the 

second probability moment is applied, we obtain 

     
   

 ).~

~~~~~(2

~~~ 222222

kkkk

kkkkkkkk

kkkkkk

wvEsb

weEsaveEba

swEbvEeEa






 (32) 

With independent noise in (32), the description 
is reduced to 

222
1

~~~
kkkkkkk sRbQaJJ  .

 
(33) 
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Replacing in (33) with the formula for ( ka~~ ) 

we get 

  222
1

~~~̂
kkkkkkkkk sRbQcsaJJ  . (34) 

Developing (34), the function 1kJ   is in 

recursive form described as 

.2~2

2~22~2~̂

2~̂~22~̂
1

k
s

k
R

k
b

k
Q

k
s

k
c

k
J

k
sc

k
J

k
a

k
a

k
J

k
c

k
s

k
a

k
J

k
J

k








 
(35) 

The stochastic gradient (
kskJ ~1 ) of (35) with 

the point properties has the minimal 
description  as 

 kkkkkkksk RcJscJaJ
k

 
2

~1
~~̂ .

 
(36) 

From (36) we obtain the optimal gain ( kK
~ ), 

summarized in the form: 

  12~̂~ 
 kkkkkkk RcJcJaS .■

 
(37) 

According to the model expressed in (1), 
where finite differences are described, its 
estimation shown in (3) is presented in Fig. 4. 

 

Fig. 4. Optimal parameter estimation evolution 

Thus, the estimated parameter is plotted 
relatively to a standard of 0.4 units. Different 
amplitudes of noise estimation were performed 
using the model described in (3), which varied 
from 0.01 to 0.5. It can be noted that a 0.02 

variance estimator has better convergence than 
the rest of the estimates. Fig. 5 presents 
the simulation. 

 

Fig. 5. Internal state identification 

4 Conclusion 

The digital filtering identification theory allows 
knowing the internal state dynamics with respect 
to a reference signal system. Nevertheless, if we 
consider a black box, this development is 
impossible. The identifier requires excitation and 
an output signal system, the transition function, 
the gain, and the innovation process.  

Moreover, within the black box, the parameters 
are unknown and are used in the transition 
function and in the identifier, which are required 
for the estimation technique. This paper 
constructs the estimation that affects the 
transition function and consequently the 
identification. It allows to improve the 
results dynamically. 
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