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It is shown that the two complex Cartesian components of the electric field of a monochromatic electromagnetic plane wave, with a temporal
and spatial dependence of the foefft>~“*), form a SU(2) spinor that corresponds to a tangent vector to the Paisphere representing

the state of polarization and phase of the wave. The geometrical representation on theePpihees of the effect of some optical filters is
reviewed. It is also shown that in the case of a partially polarized beam, the coherency matrix defines two diametrically opposite points of
the Poincak sphere.
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Se muestra que las dos componentes Cartesianas complejas del cactipeoeiie una onda plana electromatica monocroratica, con
dependencia temporal y espacial de la forté ", forma un espinor SU(2) que corresponde al vector tangente a la esfera de &oincar
que representa el estado de polariaagy fase de la onda. Se revisa la represeatageongtrica en la esfera de Poinéadel efecto de
algunos filtrosopticos. Se muestra tandéni que en el caso de un haz parcialmente polarizado, la matriz de coherencia define dos puntos
diametralmente opuestos de la esfera de Poincar

Descriptores:Vector de Jones; esfera de Poiriggyolarizaddn; espinores.

PACS: 02.20.Qs; 03.50.De; 42.25.Ja

1. Introduction The state of polarization of a wave is usually specified
making use of the Stokes parameters or the Jones vector (see,

e.g, Refs. 6-11). The Stokes parameters can be expressed in

Ir) a recent paper [1] it has beelj shown that the (real) CarFeferms of the two-component spinor mentioned above [1] and,
sian components of the electric field of a monochromatic

. . as we shall show below, the Jones vector is essentially this
electromagnetic plane wave can be expressed in terms ofSa inor. expressed in an appropriate basis
two-component SU(2) spinor, which specifies the amplitude, pinor, exp pprop '
state of polarization, and phase of the wave in such away that In Sec. 2 we give a summary of the relevant results of
two real mutually orthogonal vectors made out of this spinorRef. 1, relating them with the definition of the Jones vec-
define the point of the Poindaisphere corresponding to the tor. We show that, apart from the phase factor that gives
state of polarization and a tangent vector to the Poicarthe time and space dependence of the electric field, the Jones
sphere that determines the phase of the wave. Furthermoregctor is a two-component spinor on which the rotations on
the inner product of the spinors corresponding to two of thes¢he Poincag sphere act through the spin-1/2 representation.
waves with the same wavevector (which is related to the patn Sec. 3 we review the effect of some optical filters and
allel transport of tangent vectors to the Poirgcsphere along its geometrical representation on the Poiécaphere. We

a great circle arc [1, 2]), determines if the waves are in phasshow that the effect of a phase shifter corresponds to a rota-
according to Pancharatnam’s definition [3]. (The relationshigion of the Poinca sphere, while that of an attenuator cor-
between the inner product of spinors and the parallel transesponds to a conformal transformation of this sphere (see
port along geodesics of the sphere was already recognizealso Refs. 10 and 11). In Sec. 4 we consider partially po-
in Payne’s 1952 paper [2], without developing, however, itslarized beams, showing that the Stokes parameters can be
relationship with the interference of electromagnetic wavesarranged into & x 2 matrix that, except in the case of un-
See also Ref. 4.) polarized light, defines two diametrically opposite points of

The fact that the amplitude, state of polarization, andthe Poincag sphere.

phase of a monochromatic electromagnetic plane wave can Although some of the results obtained in this paper, such
be represented by a two-component spinor allows us to derives the matrix form for phase shifters and attenuators, are
many useful relations employing the same formalism as irffound in the literature using other approaches (sg,,
Quantum Mechanics [1], instead of the not so widely knownRef. 12 and the references cited therein), one remarkable fea-
results of spherical trigonometry [3] (see also Ref. 5). ture of the spinor formalism is that, besides the state of po-
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. . . Bl 1 1 1
larization represented by a point of the Pone:_aphfare, we E—= Al [cos=fcos (wt—kz+ —x + =6
also have the phase of the wave through the direction of a tan- 2 2 2
gent vector to the sphere at that point, which is not included 1 1 1
in other approaches. Thus the action of the optical filters are +sin=fcos|(wt—kz+=-x—=¢|| 2

. . o 2 2 2
transformations not only on the points of the Poigcsphere,
but also on the tangent vectors to this sphere. 1 . 1 1

+ COS§9S1D wt—kz+§x—|—§¢

2. The Poinca€ sphere 1 11 .
—sing 0 sin wtsz+§><f§¢ [T (4)
The Cartesian components of the electric field of a

monochromatic electromagnetic plane wave propagating in - The parametrization of the electric field given by Eq. (4)
the z-direction in a dielectric medium are usually expressedsgntains the same number of independent parameters as ex-
in the form pressions (1) (four real parameters). However, by contrast
. with (1), the parameters appearing in Eq. (4) specify more
E, = Re{A; expli(kz —wt+ é1)]}, directly the polarization state of the wave [via Egs. (3)]. Fur-
E, = Re{ Az expli(kz — wt + ¢2)]}, (1)  thermore, by considering the angksind¢ as spherical co-
ordinates in the usual mannere(, ¢ as the polar angle and
whereA;, A, are real, positive constants,andk are the an- ¢ as the azimuthal angle), each pair of val(®ss) defines a
gular frequency and wave number of the wave, respectivelypoint of the Poinca sphere [6-8].
At each point of space, the resulting electric field describes an  Another set of parameters commonly employed to spec-
ellipse centered at the origin and, therefore, the (real) electriify the polarization of a wave is given by the Stokes param-

field can be conveniently written as eters,so, s1, S2, s3, Which are related to the anglésand ¢
by means of [6, 7] (see also Ref. 3 and the references cited
E = [acos $¢ cos(wt — kz + 3 x) therein)

_bain L1 si _ 1 5
bsin y¢sin(wt — k2 + QX)] . (81,82, 83) = So(sin @ cos ¢, sin @ sin ¢, cosh),  (5)

+ [asin 3¢ cos(wt — kz + 1x)
L Lo wheresy is the total flux density. Hencés, sq, s3)/s0 is
+bcos 3psin(wt — kz + 5x)] 9, () the point of the Poincérsphere that corresponds to the po-
larization of the wave.
In the Jones formalism, theomplexCartesian compo-
nents of the electric field form a column matrix (seeg,
“Ref. 11 and the references cited therein),

whereaq, b are real constants, witls| > |b|, |a| is the ma-

jor semiaxis of the ellipsgp| is the minor semiaxis, ang/2

is the angle made by the major axis of the ellipse with th

z-axis, so that it suffices to consider values¢obetween O

and2z. The phase(/2 is necessary when one considers the Fc Aexpli(kz — wt + ¢1)]

superposition of two or more waves [1]. Tl = ) (6)
Since|b/a|] < 1, for each value of the ellipticityb/a, < Ey ) < Bexpli(kz — wt + ¢2)] )

here i [ h th
there is a uniqué € [0, x] such that where A and B are real constants. (We employ the super-

b . (w 9) script ¢ in the components of the electric field to emphasize
— = tan

4 9 the fact that they are complex.)
Hence, 2.1. Two-component spinors
0 1 1 -
a =2 Acos (Z — 2) =A (cos 3 0 + sin 3 9) , From Eg. (4) we see that the components of the electric field

are given by the compact expression

(T 0N 1,1
b—\/iAsm<42>—A<cos20 b1n26>, 3)

B, +iE, = A {cos;  cilwt—h+x/2+6/2

for some constanti, which, with no loss of generality, we

can assume positive. In this way,> 0, while b is positive + sinl 0 e—i(wt—kz+x/2—¢/2)] , 7)
for 0 < 6 < 7/2 (in which case the wave has right-hand po- 2

larization) and is negative forr/2 < 6 < = (then the wave
has left-hand polarization). The valugs= 0 andd = = cor-
respond to circular polarization, white = 7/2 in the case ol e—16/2 o5 1p
of linear polarization. Making use of Eq. (3), Eg. (2) can be 0= < ) = e"IX/2 ( 6)2 12 > (8)
rewritten in the form e'?/%sin 50

or, in terms of the unit two-component spinor
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we have 2.2. Two spinor bases

E, +iE, = A(ei(wt—kz)§+ e—i(wt—k’z)02), © Since the componentB, and £, appearing in Eq. (9) are
‘ real, Eqg. (9) is equivalent to
where the bar denotes complex conjugation.
The two-component spinor (8) may be familiar from
Quantum Mechanics; it is the normalized eigenspinor withHence, from Egs. (9) and (12) we see that
eigenvalue+7/2 of the spin projection along the direction

Eaj . lEy _ A(ei(wtflcz)? + efi(wtsz)ol)‘ (12)

i(kz—w
with anglest, ¢. The unit spinoi defines two mutually or- E, = Re{A[e'**~“) (o' 4 0%)]},
thogonal vectors with Cartesian components E, = Re {A[ei">=") (io! —i0?)]} (13)
R; = oloj0, M; = o'eojo, (10)  and, therefore, the components of the electric field are the

real part of theeomplexunctionsE;, E7, given by the Jones
whereo' is the transpose conjugateqfo® denotes the trans- vector

pose ofo, theo; are the standard Pauli matrices, and B a1 1
T | —in/4 g i(kz—wt) o
(5) vacmaom ot (1) (2) oo

8( 0 1)
S\ 0 [cf. Eq. (6)].

One can readily verify that th2x 2 matrix
[2,13]. The vectorR; is real and is the point of the Poinéar y verify x
sphere that represents the polarization state of the viave, U = e/t 11 1 141 141 15
(R1, Ra, R3) = (sinf cos ¢, sinfsin ¢, cosf). Hence, the NG —14i 1-i )’ (15)

Stokes parameters are directly related to the unit spiroyr

T2
appearing in Eq. (14), belongs to SU(2) and that

i —i

Sq
% - OTO—iO' (11) Lloll/{_l = 03, Z/[O'Qu_l =01, Z/{Ugu_l = 02. (16)

This means thdl corresponds to a SO(3) transformation that
permutes the coordinate ax8§,Y, Z, of the Poincak sphere
and that, apart from the factor

The direction ofRe M; does depend on the phageand,
therefore R; together withRe M; represent the state of polar-
ization and the phase of the wave [1]. Sifkbe)M,; is orthog-
onal toR;, Re M; is a tangent vector to the Poinéasphere V2 eI/ feilhz—wt)
(Re M; forms an angley with the meridian passing through

the pointR;). In this manner, the vectdR;, gives the point the Jones vector

of the Poincak sphere corresponding to the polarization state g

of the wave, ande M; can be viewed as a tangent vector to Eg
the Poincag sphere, whose direction gives the phase of th?s essentially the two-component spinor

wave.
If o' = Qo, with Q € SU(2), theno’ is also a unit spinor ot
and the vectors?, and M/, defined byo’, are related taR; 02

andM;, respectively, by means of the SO(3) transformation,

(ai;), given by in a different basis. That is, letting
3 ~1 1
QloiQ = Zaijo'j; ( gg ) EU( 22 ) ; (17)
j=1
that is from Eqg. (14) we have
> E¢ . . ot
Ri = Zainj, < Ei ) _ \/ﬁeflﬂ/ﬁlAel(kZ*wt) ( " ) ) (18)
j=1 Yy 0
and While the basis spinors

M;:gaiij. (Z;>:<é> and (Z;>:((1)) (19)

(which correspond té = 0 andé = , respectively) repre-

Hence, eac € SU(2) gives rise to a rotation on the . . . X
e (2) 9 sent circularly polarized waves, the basis spinors

Poincae sphere. Conversely, given a rotation on the Poéncar

sphere, there exists@ € SU(2), defined up to sign, corre- ot 1 ol 0
sponding to the rotation. 2 )~ \o and 2 )1 (20)
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represent linearly polarized waves [see Eq. (18)] and correallows us to find the vector®; and Re M; that represent

spond to the points of the Poinéssphere on th& -axis (see  the polarization state and phase of the wave on the P&ncar

Eqg. (21) below). Thus, the SU(2) matiik given by Eq. (15), sphere [Egs. (21) and (16)] and, since the inner product of

represents the connection between these two frequently er®U(2) spinors is invariant under SU(2) transformations, the

ployed bases of polarization states (see also Sec. 3.1, belowyner product of the spinors corresponding to two waves with
Equations (9) and (12) constitute a decomposition of &he same wavevector determines if the waves are in phase ac-

wave as a superposition of circularly polarized waves, withcording to Pancharatnam’s definition [1, 3] (see also Ref. 14

the components' ando? being the relative amplitudes of and the references cited therein).

this decomposition. Similarly;' anda? are the relative am-

plitudes of the decomposition of the wave as a superpositio& . .

of two linearly polarized waves. (In facnypair of different ' Ge.ome'FrlcaI representation of the effect of

points of the Poincér sphere represent a basis; the pairs of ~ optical filters

points diametrically opposite are the orthogonal bases [1, 3]
According to Eg. (17), the vectorB; and M; are given

in terms of the spinod by [see Egs. (10)]

%ince the state of polarization of a monochromatic electro-
magnetic plane wave is represented by a point of the Pdncar
sphere or, up to a phase factor, by a unit two-component
+ . . . spinor,e.g, o or o, the effect of an optical filter on the po-

Ri =o'Uod™"0,  M;=0cldod™"0, (21)  Jarization of a wave passing through the filter corresponds to
where we have made use of the relatign')'c = U, some transformation of the Poinéasphere into itself or to
which applies to unimodulat x 2 matrices. Equations (21) Some spinor transformation (see also Refs. 11 and 9).
are of the same form as Egs. (10), witlmeplaced bys and In this section, following Ref. 11, we consider some sim-
o, replaced byl{o;i{~*. As shown in Egs. (16), the matri- ple examples of optical filters, finding their representation on
ceslUo;Ud~! are a cyclic permutation of the Pauli matrices the spinor space and on the Poiriaphere.
(which explains the definition of the Pauli matrices adopted,
without justification, in Ref. 11, Appendix B). 3.1. Phase shifters

Thus, apart from the factaf(**—«*) the components of

the Jones vector (6) are the components of a constant SU(H) an optical filter produces a phase shift for the -
spinor (that is, independent ofand z), 4, in a basis that component of the electric field and a, possibly different,

differs from the standard one [Eq. (18)]. The unit spifior Phase shifty; for the y-component, the electric field (4) is
|  replaced by

1 1 1 1 1 1
E= A{ [cos 50008(wt —kz+ X + §¢> +01) + sin 59 cos(wt — kz + oX ~ 5(;5 + 61)} Z

+ {cos %9 sin(wt — kz + %X + %(b + 02) — sin %9 sin(wt — kz + %X — %gzﬁ + 62)] g}} (22)

This expression is equivalent to
; Hwt—kz+(51492)/2) | cog L6 cos 206 F9)/2 _ i gin L5 sin L0 ei(Xx—6)/2
E,+iE,=A<e 102 cos 55005 596 —isin iésln §9e
—i(wt—k2+(01482)/2) | oo 28 sin 20— —9)/2 1 isin L5 cos L0 e—i(xt®)/2
+e 1702 cos iéslniﬁe + isin 5(5008 598 ,

which is duly of the form (9), with the two-component spirareplaced by

(0/1> _ i)z [ O0° 30 isingd <01> (23)
/2 a1 1 2 )
o isin5d cos 3o o
whered = §5 — ;.
Apart from the overall phase facteri(®1+92)/2 the transformation (23) is given by the SU(2) matrix
1 i L
cos 36 isin 36 < 1 ) < 1 ) <_1 )
=|cos=0|I+i(sin=0|o; =exp|i=doy |, 24
( isin%é cos%é ) 2 2 ! AN (24)
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where[ is the2 x 2 identity matrix, which corresponds to The effect represented by the SU(2) transformation (28)

a rotation on the Poincarsphere through an angle) about  comes from the anisotropy of the medium, which produces

the X -axis. different effects on the linearly polarized waves with electric
There exist two diametrically opposite points of the field along thex-axis or they-axis. In an analogous manner,

Poincaeé sphere that are invariant under this rotation (thea gyrotropic medium (seege.g, Ref. 15) produces different

points on the intersection of the Poineasphere and the effects on the waves with right or left circular polarization;

X-axis), which, therefore, correspond to polarization statesherefore, the effect of a gyrotropic medium is represented

that are not affected by this filter. These two polarizationby

states are linearly polarized waves with the electric field ) ) )

along thez-axis or they-axis [the states (20)], as one would [+)e 01 (4] + [ e 02 (—| = 701 F0R)/2

expect. (Note that, owing to the definition of the angle i5/2 _is/2

given in Sec. 2, a rotation of the coordinate axes inihe X< ()2 (] 4 [=)e (=),

plane through an angte produces the substitution 6§/ 2 by

. X ; whered = d, — 41, or by the unitary matrix
(¢/2) — a, which corresponds to the action of the matrix

: 1
e 1014+82)/2 oy <i25 03) ,

which corresponds to a rotation on the Poigcaphere
through an angle-§ about theZ-axis.

Hence, with respect to the basis (20), formed by states
with linear polarization, making use of Egs. (16) or (27), the
effect of a gyrotropic medium will be represented by a matrix
of the form

e 101482)/2 oy (15502> _ o—i(01462)/2

< eO e—oi"‘ > = exp(ia 03) (25)
on the spinow. This SU(2) matrix, in turn, corresponds to a
rotation on the Poincarsphere through an angi€« about
the Z-axis. Thus, a rotation b90° in the zy-plane, which
transforms a linear polarization along theaxis into a lin-
ear polarization along thg-axis, corresponds to a rotation
by 180° in the Poincak sphere.)

According to Egs. (16), with respect to the basis (20),
formed by linearly polarized states, the spinor transforma-
tion (23) is given by the unitary matrix

) i8/2 cos %5 —sin %6 29)
—i . i ! 0 X .
e i(01402)/2 gy (12503> — o—i(61+62)/2 (e 0 e‘i5/2> sin %5 oS %6
o—id1 0 A quarter-wave plate [9] is a phase shifter correspond-
= ( 0 e—i62> ; (26)  ing to a rotation on the Poindarsphere through/2 about

an axis on theXY-plane. Hence, with respect to the basis
as one would expect, owing to the definitiondgfandd,. {|+),|—)}, itis represented by the SU(2) matrix
In order to reduce the possible confusions coming from
the simultaneous use of two different bases, it is convenient  (cosw/4)I — i(sin7/4)[(cos 20) o1 + (sin 26) 03]
to make use of Dirac’s notation, denoting py) and|—) the

1
states with circular polarization (19), respectively. Then, = \—@[I —i(cos 20) o1 — i(sin 260) 03],
_ 1 —im/4 1 —im/4 . H
|z) = 7° +) + 7° |=) whered is the angle between the axis of the plate and the
. ) x-axis [see the discussion after Eq. (25)], and, according to
— 1t in/a L ima Egs. (16), with respect to the bagis), |y) }, itis represented
= e +) + e , 27 J
ly) 7 +) 7 - @7) by 1
correspond to states with linear polarization (the states (20), 7[[ —i(cos 20) o5 — i(sin 20) o1 ].
which are essentially the statps and|h) with vertical and 2

horizontal polarization employed in Ref. 5). (See Eq. (15).)A half-wave plate is a phase shifter corresponding to a rota-
In this manner, the SU(2) transformation (24) is expressed aléon on the Poincdr sphere through about an axis on the
XY -plane and, therefore, is represented by the square of the

(Cos ;5) J (sin ;5> (1) (=] + | =) (+]), matrix corresponding to a quarter-wave plate.

which, by virtue of Egs. (27), amounts to 3.2. Attenuators

|$>ei§/2<m| T ‘y>efi6/2<y‘ (28) In the case of an optical filter that produces an attenuation
given by a factore~—" for the z-component of the electric
and corresponds to the diagonal matdg(c'®/2,e=9/2)  field and an attenuation given ly 2 for the y-component,
appearing in Eqg. (26). the electric field (4) is replaced by
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1 1 1 1 1 1
— —-m o« _ - - iz _ Sy = 5
E A{e [00529 cos (wt kz+2x+2¢)>+sm29 cos (wt kz+2x 2(;5)}1’

1 1 1 1 1 1
. 1. _ 1 ry 1. _ 1 .
+e [cos 29 sin (wt kz + 2x+ 2¢> sin 29 sin (wt kz + 5 X 2(;5)] y} (30)

This expression is equivalent to
E,+iE, = Aef("ﬁm)/z{ei(m*m) {cosh 177 cos 19 ol(x+e)/2
¥ 2 2
nh S sin £0ei9)/2] 4 gmilwi—k2) L in L0 109/2 L ginh 21 cos 20 e—i0cH9)/2
+ sinh 57’]S1n§96 X } +e {cosh§7751n 596 X + sinh 57 cos §Ge X }}7

which is of the form (9), with the two-component spiroreplaced by

/1 cosh 21 sinh 1 1 1
< - ) o (mtm)/2 ( 37 5] ) ( 2 ) — ) 2 exp(Ly ) ( % ) (31)

sinh1n coshin

wheren = 1, — 1. The2 x 2 matrix appearing in Eq. (31)
is unimodular, but does not belong to SU(2) and, thereforel,"’here tr denotes the tracey; = I, andoy, 03, 03, are the
it does not correspond to a rotation on the Poiacgghere. Pauli matrices, as above.
Rather, it corresponds to a conformal transformation of the ~ The Hermitean matriy = C'/s, has the usual properties
sphere (see.g, Ref. 16). In any case, the effect of the atten-Of @ density matrix (or density operator) as defined in Quan-
uator on the polarization state of a wave is represented by &M Mechanics (see.g, Ref. 17), namely
transformation on the points of the Poingaphere.

Clearly, if there is an attenuation given by a factof” trp=1,
for the z-component of the electric field and an attenuation
given bye~"2 for they-component, the column matrix (6) is

trp? < 1. (35)

In fact, Egs. (34) (together with the conditidgif = C) are
equivalent to

replaced by
E! _ el/? 0 E, _ L/ so+s3 s1—1isg
(B)=con (0 ) () @ e uty) e
and the non-unitary, unimodular matrix appearing in this lasthat is, 5
equation, which can be expressedeap(1103), is exactly - 1 Z s o (37)
what we should expect taking into account Egs. (31) and (16). 2 ~= are

and one readily verifies thatC'=s,, andtrC?=s¢% — S/2,
which amount to Egs. (35), taking into account that 0.
Furthermoredet C' = S/4; hence, in the case of a com-

4. Partially polarized beams

As is often remarked, by contrast with the Jones vector, theI | larized " h O having d
Stokes parameters can also be used to deal with partiall etely po arlzel wavey = 0),bt efmhatr:cx ! awr?g e-
polarized beams. In this section we show that the two-_ermlnant equal to zero, must be of the fog!, where

component spinor formalism can be easily adapted to handf§ SOMe two-component spinor. In fact, W”t'ﬁgf s000', i}
partially polarized light, and, as we shall see, the resulting deyvhereo ISa normghzed spinor, we recover the (‘pure state”)
scription is equivalent to that given by the coherency matrix*2S€ considered in Sec. 2. Indeed,
(cf. Ref. 11, Appendix B).

The Stokes parameters allow us to distinguish a com-
pletely polarized beam from a partially polarized beam. Let-4 g

ting

tr (Cog) = sotr (0o') = spo'o = s,

S=s0" —51° = 52" — 537, (33) tr (Co;) = sotr (00’ 0;) = spo'oj0 = s, (1=1,2,3)
it turns out that for a completely polarized beath= 0 [cf. )
Eq. (5)], while for a partially polarized beans, > 0 (see, [S€€ EQ. (11)], reproducing Egs. (34).
e.g, Ref. 6, Sec. 10.8.3). The four Stokes parameters can be The matrixC', being Hermitean, possesses two mutually

related to & x 2 Hermitean matrix(’, by means of orthogonal unit eigenspinors with real eigenvalues. These
unit spinors correspond to two diametrically opposite points
Sa = tr (Coy), (a=0,1,2,3) (34) of the Poincag sphere [see Ref. 1, Eq. (18)]. SinCeis a
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2 x 2 matrix, its two eigenvalues coincide only whéhis a  not present irQCQ' because they have unit modulus). The
multiple of the identity matrix and, only in this case, which eigenspinors o)CQ" are the images undéJ of those ofC;
corresponds to “unpolarized” light{ = s; = s3 = 0), the  therefore, the diametrically opposite points on the Pofcar
direction of the eigenspinors @t is not uniquely defined. In  sphere defined b)CQ' are obtained from those defined
all cases, the unit eigenspinors@fare defined up to a phase by C' by means of the rotation corresponding@d(see also
factor, hence, there are no uniquely defined tangent vectoRefs. 18 and 19).
to the Poince& sphere at these points, analogous to the vec-  Similarly, when a partially polarized beam passes through
tor Re M defined in Sec. 2. an attenuator, the initial matrix' is transformed into

Thus, in the case of a partially polarized beam (a “mixed ;
s.tate"),' the polanzat.lon, state defines twq diametrically oppo- o= (m+m)/2 oy (17701) C |:e—(171+772)/2 exp (17701)]
site points of the Poincéarsphere (except in the case of unpo- 2 2
larized light). However, these two points (which correspond 1 1
to the eigenspinors af’) do not fully specify the matrixC, — e~ (m+m) oxp (7701) Cexp (7701>
since the eigenvalues need to be known. According to the
discussion in Sec. 2, the vectat$si, s2, s3) pointalong the  [see Eq. (31)], which is of the form (37), witlso, s1, s2, s3)
directions of the points of the Poin@asphere representing replaced by
the partially polarized beam.

When the beam is completely polarize€, is of the e*(’71+’72)(50 coshn
form C' = sgoo'; the unit spinoro is an eigenspinor of”
(Co = sgooto = sy0) and any spinor orthogonal io(e.g,
the mate ob [1]) is also an eigenspinor @f (with eigenvalue

+ s1sinh, s1 coshn + sg sinh 7, 2, s3). (40)

Thus, apart from the overall facter ("1 +72)| the effect of an

equ:lst\(,)v;ﬁ Z)r)]' matrix. the form and properties Gfdepend attenuator on the Stokes parameters has the form of a Lorentz
y ' prop P boost in ther-direction (see also Refs. 10 and 11).

on the basis employed. Fortunately, making use of Eq. (37),
which givesC' in terms of the Pauli matrices, and Egs. (16), .
we can obtain at once the expressioiCah the basis formed 5. Conclusions

by the unit spinors (20); the resulting expression is ) _
We have shown that the several objects and formalisms em-

ployed in the study of the polarization of electromagnetic
waves are deeply related, despite their apparent differences.
1/ so+s81 sy—is3 In particular, the identification of the Jones vector with a
9 ( > (38) SU(2) spinor, allows us to represent the Jones vector by a tan-
gent vector to the Poincaisphere, in terms of which, among

Taking into account the relationship between the Stokes pasther things, the Pancharatnam phase can be visualized.
rameters and the elements of the coherency maifyjx(see,

e.g, Ref. 6, Sec. 10.8.3), we have

6: (SQI+810'3+820'1+530'2)

DN | =

So +1is3  Sop — s1
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